5 resultados para Glutelins
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
BACKGROUND: Baru (Dipteryx alata Vog.) is a fruit distributed throughout the Brazilian savanna and contains a seed with a high protein content, whose properties have been rarely explored. The purpose of this study was to characterize this protein, especially by isolation and quantifying its fractions and measuring some of its molecular properties.RESULTS: Baru seeds contain 244 g kg(-1) protein on a dry weight basis. Solubility profiles showed a preponderance of globulins. This fraction dominated the seed composition, with 61.7 wt% of the total soluble proteins. Albumins and glutelins accounted for 14 and 3.3 wt%, respectively. SDS-PAGE resolution of albumin and globulin showed main bands with molecular weights of 84 kDa and 64,66 and 73 kDa, respectively. The total protein of the flour and the globulin showed values of in vitro digestibility of 85.59% and 90.54%, relative to casein. Total globulin produced only one chromatographic peak, both on Sepharose CL-6B gel filtration and on DEAE-cellulose ion-exchange columns, eluted at a concentration of 0.12 mol L(-1) NaCl.CONCLUSION: The baru seed had high protein content with large quantities of storage proteins. The chromatographic and solubility profiles indicate the predominance of a fraction with characteristics of a legumin-type protein. (C) 2011 Society of Chemical Industry
Resumo:
The guava seed protein isolate ( PI) was obtained from the protein precipitation belonging to the class of the gluteline (Ip 4.5). The conditions for the preparation of the PI were determined by both the solubility curve and simultaneous thermogravimetry-differential thermal analysis (TG-DTA): pH 11.5, absence of NaCl and whiteners and T=( 25 +/- 3) degrees C. Under these conditions a yield of 77.0 +/- 0.4%, protein content of 94.2 +/- 0.3, ashes 0.50 +/- 0.05% and thermal stability, T= 200 degrees C, were obtained. The TG-DTA curves and the PI emulsification capacity study showed the presence of hydrophobic microdomains at pH 11.5 and 3.0 suggesting a random coil protein conformation and, to pH 10.0, an open protein conformation. The capacity of emulsification (CE), in the absence of NaCl, was verified for: 1 - pH 3.0 and 8.5, using the IP extracted at pH 10.0 and 11.5, CE >= 343 +/- 5 g of emulsified oil/g of protein; 2 - pH 6.60 just for the PI obtained at pH 11.5, CE >= 140 +/- 8 g of emulsified oil/g of protein.
Resumo:
Nitrogen limitation in the common bean (Phaseolus vulgaris L.) produces reduced productivity and seeds with low protein content and physiological quality. We assessed the effects of nitrogen fertilizer side dressing on the protein content and physiological quality of the seeds of P. vulgaris L. cultivars (cv.) IPR Juriti and Pérola grown in plots (soil type = Dystrophic Red Latosol) using a no-tillage system under a thick mulch of millet residues at the Experimental Station of UNESP-Ilha Solteira campus, located in Selvíria, MS (Köppen climate type = Aw) during autumn (March/June) and winter (June/September) 2005. For each cultivar, a randomized block experimental design was used with four replicates and factorially arranged treatments equivalent to 0, 30, 60, 90 and 120 kg.ha-1 added nitrogen (as urea, containing 45% of N) applied as a side dressing during the V4-3 and V4-6 phenological stage corresponding to the 3rd and 6th completely opened trifoliolate leaf on the main stem. Supplementation with up to 120 kg.ha-1 nitrogen promoted a greater increase in crude protein at V4-3 (unsupplemented = 17.6% and 16.3%; 120 kg.ha-1 N = 24.1% and 22.3% for cv. IPR Juriti and Pérola, respectively) than at V4-6 (unsupplemented = 19.2% and 18.3%; 120 kg.ha-1 N = 21.3% and 20.3% for cv. IPR Juriti and Pérola, respectively). About 90% of the crude protein from cv. IPR Juriti was composed of soluble protein compared to 72% for the cv. Pérola. Albumins and globulins represented about 80% of the soluble protein and prolamins were lower at 0.6%. In conclusion, nitrogen fertilization up to 120 kg.ha-1 applied as a side dressing at the V4-3 phenological stage in no-tillage under a thick mulch of millet promoted a greater increase of crude protein in common bean seeds than at the V4-6 stage. The highest accumulation of soluble protein occurred at 90 kg.ha-1 applied nitrogen without having a significant influence on the physiological quality of the seeds.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)