12 resultados para Glossoscolex paulistus
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study reveals that the excretory system of Glossoscolex paulistus is formed by open holonephridia (exonephridia). It is noticed that different zones are recognized in the nephridial canal, with defined histological and histochemical characteristics: 1) primary canal; 2) lobed canal; 3) first rounded segment; 4) afferent thin segment; 5) efferent thin segment; 6) second rounded segment; 7) ciliary tube; 8) clear canal; 9) pigmented canal; 10) intermediate canal; 11) bladder; 12) terminal canal; 13) nephridiopore. All these regions are intercellular and cilia are found in regions 1, 2, 3, 6, 7 and 13. The connections between afferent and efferent capillary of the vascular supply of the nephridium are made of capillary loops and dilatations which we call glomeruli in this paper. Filtering functions are suggested for the glomerulus. The response of the lobed canal and the first and second rounded segments to Gomori's reaction is strongly positive and this is found to coincide with the largest concentration of glomeruli in the main loops 1 and II, that suggests a higher filtration capacity for the canal and segments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Further characterization of hemoglobin of Glossoscolex paulistus (HbGp) subunits was performed based on SDS-PAGE, size exclusion chromatography (SEC) and MALDI-TOF-MS analysis. SDS-PAGE has shown a total of four linker chains, two quite intense and two of lower intensity. HbGp fractions (I-VI), obtained by size exclusion chromatography (SEC), from oligomeric dissociation at alkaline pH 9.6, were monitored. Fraction I is identical to the whole protein. The monomeric chains c, obtained from the trimer abc reduction, present four isoforms with MM 17,336 Da, 17,414 Da, 17,546 Da and 17,620 Da. Furthermore, the trimer subunit presents two isoforms, T 1 and T 2, with MM 51,200 ± 60 and 51,985 ± 50 Da, respectively. Based on SDS-PAGE, the linker chains seem to be distributed along the different fractions of the SEC chromatogram, appearing along the peaks corresponding to fractions I-V. The fraction IV contains, predominantly, trimers with some linkers contamination. The strong interaction of linker chains L with the trimers abc, makes it difficult to obtain these subunits in pure form. The monomer d in fraction VI appears to be quite pure, in agreement with previous studies. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The urea effect on the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) stability was studied by analytical ultracentrifugation (AUC) and small angle X-ray scattering (SAXS). AUC data show that the sedimentation coefficient distributions curves c (S), at 1.0mol/L of urea, display a single peak at 57 S, associated to the undissociated protein. The increase in urea concentration, up to 4.0mol/L, induces the appearance of smaller species, due to oligomeric dissociation. The sedimentation coefficients and molecular masses are 9.2S and 204kDa for the dodecamer (abcd)3, 5.5S and 69kDa for the tetramer (abcd), 4.1S and 52kDa for the trimer (abc) and 2.0 S and 17kDa for the monomer d, respectively. SAXS data show initially a decrease in the I(0) values due to the oligomeric dissociation, and then, above 4.0mol/L of denaturant, for oxy-HbGp, and above 6.0mol/L for cyanomet-HbGp, an increase in the maximum dimension and gyration radius is observed, due to the unfolding process. According to AUC and SAXS data the HbGp unfolding is described by two phases: the first one, at low urea concentration, below 4.0mol/L, characterizes the oligomeric dissociation, while the second one, at higher urea concentration, is associated to the unfolding of dissociated species. Our results are complementary to a recent report based on spectroscopic observations. © 2012 Elsevier B.V.
Resumo:
The thermal denaturation and aggregation of the HbGp, in the oxy- and cyanomet-forms, was investigated by DSC, AUC, DLS, optical absorption and CD, in the pH range from 5.0 to 7.0. Oxy-HbGp has a denaturation process partially reversible and dependent on the temperature. DSC melting curve is characterized by a single peak with Tc value of 333.4±0.2K for oxy-HbGp, while two peaks with Tc values of 332.2±0.1 and 338.4±0.2K are observed for cyanomet-HbGp, at pH 7.0. In acidic pH oxy- and cyanomet-HbGp are more stable showing higher Tc values and aggregation. AUC data show that, HbGp, at pH 7.0, upon denaturation, remains undissociated at 323K, presenting oligomeric dissociation at 333 (12±3% of tetramer and 88±5% of whole HbGp) and 343K (70±5% of monomer and 30±2% of trimer). DLS data show that the lag period before aggregation is dependent on the temperature and HbGp concentration. Optical absorption and CD results show that the increase of temperature leads to the oxy-HbGp oxidation and aggregation, above 331K, in acidic pH. CD data, for HbGp, present a greater thermal stability in acid medium than at neutral pH, with similar Tc values for both oxidation forms. Our data are consistent with previous studies and represents an advance in understanding the thermal stability of oligomeric HbGp structure. © 2012 Elsevier B.V.
Resumo:
1. 1. The onset of or reactivation from aestivation in the earthworm Glossoscolex paulistus were dependent upon soil moisture. No evidence of temperature effect in the process was found either in field or laboratory data. 2. 2. Oxygen uptake measured in active and aestivating groups revealed remarkable reduction for aestivating earthworms at various temperatures studied. 3. 3. No evidences of temperature compensation in oxygen uptake was found in both groups of earthworms, indicating that reduction in oxygen uptake is the only adaptation for the aestivating G. paulistus. © 1985.
Resumo:
Glossoscolex paulistus (HbGp) hemoglobin is an oligomeric protein, presenting a quaternary structure constituted by 144 globin and 36 non-globin chains (named linkers) with a total molecular mass of 3.6MDa. SDS effects on the oxy-HbGp thermal stability were studied, by DLS and SAXS, at pH 5.0, 7.0 and 9.0. DLS and SAXS data show that the SDS-oxy-HbGp interactions induce a significant decrease of the protein thermal stability, with the formation of larger aggregates, at pH 5.0. At pH 7.0, oxy-HbGp undergoes complete oligomeric dissociation, with increase of temperature, in the presence of SDS. Besides, oxy-HbGp 3.0mg/mL, pH 7.0, in the presence of SDS, has the oligomeric dissociation process reduced as compared to 0.5mg/mL of protein. At pH 9.0, oxy-HbGp starts to dissociate at 20°C, and the protein is totally dissociated at 50°C. The thermal dissociation kinetic data show that oxy-HbGp oligomeric dissociation at pH 7.0, in the presence of SDS, is strongly dependent on the protein concentration. At 0.5mg/mL of protein, the oligomeric dissociation is complete and fast at 40 and 42°C, with kinetic constants of (2.1±0.2)×10-4 and (5.5±0.4)×10-4s-1, respectively, at 0.6mmol/L SDS. However, at 3.0mg/mL, the oligomeric dissociation process starts at 46°C, and only partial dissociation, accompanied by aggregates formation is observed. Moreover, our data show, for the first time, that, for 3.0mg/mL of protein, the oligomeric dissociation, denaturation and aggregation phenomena occur simultaneously, in the presence of SDS. Our present results on the surfactant-HbGp interactions and the protein thermal unfolding process correspond to a step forward in the understanding of SDS effects. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)