3 resultados para Glauber-Sudarshan distribution

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, an approach to discrete quantum phase spaces which comprehends all the main quasiprobability distributions known has been developed. It is the research that started with the pioneering work of Galetti and Piza, where the idea of operator bases constructed of discrete Fourier transforms of unitary displacement operators was first introduced. Subsequently, the discrete coherent states were introduced, and finally, the s-parametrized distributions, that include the Wigner, Husimi, and Glauber-Sudarshan distribution functions as particular cases. In the present work, we adapt its formulation to encompass some additional discrete symmetries, achieving an elegant yet physically sound formalism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adopting the framework of the Jaynes-Cummings model with an external quantum field, we obtain exact analytical expressions of the normally ordered moments for any kind of cavity and driving fields. Such analytical results are expressed in the integral form, with their integrands having a commom term that describes the product of the Glauber-Sudarshan quasiprobability distribution functions for each field, and a kernel responsible for the entanglement. Considering a specific initial state of the tripartite system, the normally ordered moments are then applied to investigate not only the squeezing effect and the nonlocal correlation measure based on the total variance of a pair of Einstein-Podolsky-Rosen type operators for continuous variable systems, but also the Shchukin-Vogel criterion. This kind of numerical investigation constitutes the first quantitative characterization of the entanglement properties for the driven Jaynes-Cummings model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.