169 resultados para Glandular Secretion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Morphological alterations on the prostate of Calomys callosus submitted to chronic ethanol ingestion
Resumo:
The objective of the present study was to assess the possible toxic effects of chronic alcohol ingestion on the ultrastructure of the glandular epithelium of the prostate of the rodent Calomys callosus, in order to contribute to the understanding of the consequences of alcohol abuse for the morphology of the male reproductive apparatus. Sixteen adult animals aged three months were divided into two experimental groups. The control group received a solid diet and tap water, and the alcoholic group received the same solid diet and ethanol P.A. diluted 20% in water (v/v). After 120 days of treatment, all animals were anesthetized, weighed and sacrificed. At the end of treatment, mean body weight did not differ between control and alcoholic animals. The prostate epithelial cells of the alcoholic group showed intense atrophy and ultrastructural alterations such as the presence of lipid droplets, altered nuclei, ruptured mitochondrial cristae, and intense dilatation of the cisterns of the granular endoplasmic reticulum. It was concluded that 20% ethanol provokes marked lesions on the epithelium of the prostate probably interfering on the glandular secretion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Most advanced eusocial bees recruit their nestmates to food resources. Recently, studies in Meliponini species showed that the cephalic salivary (labial) glands (CSGs) are responsible for the production of scent-trail pheromones. Studies on CSGs have shown changes in glandular cell morphology since the worker emerges from brood combs (newly emerged) till forager phase, which may be correlated to changes in the composition of secretion produced. However, no study has been made till now regarding to the composition of CSGs secretion of Scaptotrigona postica and the chemical changes that occur in this secretion according to the worker's life phase or tasks performed. In this study, the chemical profile of CSG secretion in S. postica workers was studied. Glands were taken from specimens newly emerged (NE), working in the brood combs area (CA) and forager (FO) and were analyzed by gas chromatography-mass spectrometry. The results showed that glandular secretion consists of oxygenated compounds of middle volatility (acids, alcohols, aldehydes, ketones, esters and ether), and their quantity varies among the different phases of life, increasing as the individual undergoes from intra- to extra-colonial activities. The NE phase contained the smallest variety and quantity of compounds. Due to the variability of compounds, the CA workers were separated into 3 groups according to the chemical constitution of their secretion. Forager workers showed the largest quantity and variety of chemical compounds. The major compounds in forager gland secretion are 7-hexadecen-1-yl acetate and 5-tetradecen-1-yl acetate. Statistical analysis indicates that the chemical composition of glandular secretion is task-related.
Resumo:
The cocoon, produced by most holometabolous insects, is built with silk that is usually produced by the larval salivary gland. Although this silk has been widely studied in the Lepidoptera, its composition and macromolecular arrangement remains unknown in the Hymenoptera. The macromolecular array patterns of the silk in the larval salivary gland of some meliponids, wasps, and ants were analyzed with polarized-light microscopy, and they were compared with those of Bombyx mori (Lepidoptera). There is a birefringent secretion in the glandular lumen of all larvae, due to filamentous structural proteins that display anisotropy. The silk in the distal, middle and proximal regions of the secretory portion of Formicidae and Vespidae glands presented a lattice optical pattern. We found a different pattern in the middle secretory portion of the Meliponini, with a zigzag rather than a lattice pattern. This indicates that the biopolymer fibers begin their macromolecular reorganization at this glandular region, different from the Formicidae and the Vespidae, in which the zigzag optical pattern was only found at the lateral duct. Probably, the mechanism of silk production in the Hymenoptera is a characteristic inherited from a common ancestor of Vespoidea and Sphecoidea; the alterations in the pattern observed in the Meliponini could be a derived characteristic in the Hymenoptera. We found no similarity in the macromolecular reorganization patterns of the silk between the Hymenoptera species and the silkworm.
Resumo:
The structure and ultrastructure of immature to fully mature glandular dots in the leaf, floral organs and fruit, and their secretion components were described in Caesalpinia echinata Lam. (Leguminosae) for the first time. Data showed that glandular dots were groups of idioblasts with contents that reacted positively for both lipophilic and hydrophilic substances. Idioblasts originated from successive divisions of the ground meristem cells or mesophyll cells of an ovary of a fertilized flower. Following division, cells enlarged, the cytoplasm became denser and its content became full. No idioblasts were observed after fruit sclerification. Besides these mixed-content idioblasts, some cells in the sepals, petals and mesocarp were found to contain phenolic compounds, which probably represent a kind of constitutive defense mechanism, once the flowers and fruits become highly fitness-valued parts of the plant and can be commonly attacked. The contents of the idioblasts are released as the growth rate of the embryo increases, indicating that the plant probably diverts the precursors of secondary metabolites into the primary metabolism, at this critical time of embryo development.
Resumo:
The silk gland in Lepidoptera larvae is responsible for the silk production used for shelter or cocoon construction. The secretion of fibroin and sericin by the different silk gland regions are well established. There are few attempts to detect lipid components in the insect silk secretion, although the presence of such element may contribute to the resistance of the shelter to wet environment. This study characterizes the glandular region and detects the presence of lipid components in the secretion of the silk gland of Diatraea saccharalis (Fabricius). The silk gland was submitted to histochemical procedure for lipid detection or conventionally prepared for ultrastructural analyses. Lipid droplets were histochemically detected in both the apical cytoplasm of cell of the anterior region and in the lumen among the microvilli. Ultrastructural analyses of the anterior region showed lipid material, visualized as myelin-like structures within the vesicular Golgi complex and in the apical secretory globules, mixed up with the sericin; similar material was observed into the lumen, adjacent to the microvilli. Lipids were not detected in the cells neither in the lumen of the posterior region. Our results suggest that the silk produced by D. saccharalis has a minor lipid content that is secreted by the anterior region together with the sericin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)