67 resultados para Genomic data integration

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geophysical methods are widely used in mineral exploration. This paper discusses the results of geological and geophysical studies in supergene manganese deposits of southern Brazil. Mineralized zones as described in geological surveys were characterized as of low resistivity (20 Omega.m) and high chargeability (30ms), pattern found also in oxides and sulfite mineral deposits. Pseudo-3D modeling of geophysical data allowed mapping at several depths. A relationship between high chargeability and low resistivity may define a pattern for high grade gonditic manganese ore. Large areas of high chargeability and high resistivity may result in accumulation of manganese and iron hydroxides, due to weathering of the gonditic ore, dissolution, percolation and precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bovine species have witnessed and played a major role in the drastic socio-economical changes that shaped our culture over the last 10,000 years. During this journey, cattle hitchhiked on human development and colonized the world, facing strong selective pressures such as dramatic environmental changes and disease challenge. Consequently, hundreds of specialized cattle breeds emerged and spread around the globe, making up a rich spectrum of genomic resources. Their DNA still carry the scars left from adapting to this wide range of conditions, and we are now empowered with data and analytical tools to track the milestones of past selection in their genomes. In this review paper, we provide a summary of the reconstructed demographic events that shaped cattle diversity, offer a critical synthesis of popular methodologies applied to the search for signatures of selection (SS) in genomic data, and give examples of recent SS studies in cattle. Then, we outline the potential and challenges of the application of SS analysis in cattle, and discuss the future directions in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of markers distributed all long the genome may increase the accuracy of the predicted additive genetic value of young animals that are candidates to be selected as reproducers. In commercial herds, due to the cost of genotyping, only some animals are genotyped and procedures, divided in two or three steps, are done in order to include these genomic data in genetic evaluation. However, genomic evaluation may be calculated using one unified step that combines phenotypic data, pedigree and genomics. The aim of the study was to compare a multiple-trait model using only pedigree information with another using pedigree and genomic data. In this study, 9,318 lactations from 3061 buffaloes were used, 384 buffaloes were genotyped using a Illumina bovine chip (Illumina Infinium (R) bovineHD BeadChip). Seven traits were analyzed milk yield (MY), fat yield (FY), protein yield (PY), lactose yield (LY), fat percentage (F%), protein percentage (P%) and somatic cell score (SCSt). Two analyses were done: one using phenotypic and pedigree information (matrix A) and in the other using a matrix based in pedigree and genomic information (one step, matrix H). The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year-calving season), number of milking (2 levels), and age of buffalo at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The heritability estimates using matrix A were 0.25, 0.22, 0.26, 0.17, 0.37, 0.42 and 0.26 and using matrix H were 0.25, 0.24, 0.26, 0.18, 0.38, 0.46 and 0.26 for MY, FY, PY, LY, % F, % P and SCCt, respectively. The estimates of the additive genetic effect for the traits were similar in both analyses, but the accuracy were bigger using matrix H (superior to 15% for traits studied). The heritability estimates were moderated indicating genetic gain under selection. The use of genomic information in the analyses increases the accuracy. It permits a better estimation of the additive genetic value of the animals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

P>In livestock genetic resource conservation, decision making about conservation priorities is based on the simultaneous analysis of several different criteria that may contribute to long-term sustainable breeding conditions, such as genetic and demographic characteristics, environmental conditions, and role of the breed in the local or regional economy. Here we address methods to integrate different data sets and highlight problems related to interdisciplinary comparisons. Data integration is based on the use of geographic coordinates and Geographic Information Systems (GIS). In addition to technical problems related to projection systems, GIS have to face the challenging issue of the non homogeneous scale of their data sets. We give examples of the successful use of GIS for data integration and examine the risk of obtaining biased results when integrating datasets that have been captured at different scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore, the routine collection of genomic information would be an invaluable resource for effective management of breeding programs in small, endangered populations. The objective of the paper was to demonstrate how genomic data could be used to analyse (1) linkage disequlibrium (LD), LD decay and the effective population size (NeLD); (2) Inbreeding level and effective population size (NeROH) based on runs of homozygosity (ROH); (3) Prediction of genomic breeding values (GEBV) using small within-breed and genomic information from other breeds. The Tyrol Grey population was used as an example, with the goal to highlight the potential of genomic analyses for small breeds. In addition to our own results we discuss additional use of genomics to assess relatedness, admixture proportions, and inheritance of harmful variants. The example data set consisted of 218 Tyrol Grey bull genotypes, which were all available AI bulls in the population. After standard quality control restrictions 34,581 SNPs remained for the analysis. A separate quality control was applied to determine ROH levels based on Illumina GenCall and Illumina GenTrain scores, resulting into 211 bulls and 33,604 SNPs. LD was computed as the squared correlation coefficient between SNPs within a 10 mega base pair (Mb) region. ROHs were derived based on regions covering at least 4, 8, and 16 Mb, suggesting that animals had common ancestors approximately 12, 6, and 3 generations ago, respectively. The corresponding mean inbreeding coefficients (F ROH) were 4.0% for 4 Mb, 2.9% for 8 Mb and 1.6% for 16 Mb runs. With an average generation interval of 5.66 years, estimated NeROH was 125 (NeROH>16 Mb), 186 (NeROH>8 Mb) and 370 (NeROH>4 Mb) indicating strict avoidance of close inbreeding in the population. The LD was used as an alternative method to infer the population history and the Ne. The results show a continuous decrease in NeLD, to 780, 120, and 80 for 100, 10, and 5 generations ago, respectively. Genomic selection was developed for and is working well in large breeds. The same methodology was applied in Tyrol Grey cattle, using different reference populations. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13-0.91 and 0.12-0.63, when estimated breeding values and deregressed breeding values were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being a consequence of low reliabilities of pseudo-phenotypes in the validation set, thus being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds, even if its primary usage differs from that of large breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a technique to share the data stored in an object-oriented database aimed at designing environments. This technique shares data between two related databases, called the Original and Product databases, and is composed of three processes: data separation, evolution and integration. Whenever a block of data needs to be shared, it is spread into both databases, resulting in a block on the original database, and another into the Product database, with special links between them controlled by the Object Manager. These blocks do not need to be maintained identical during the evolution phase of the sharing process. Six types of links were defined, and by choosing one, the designer control the evolution and reintegration of the block in both databases. This process uses the composite object concept as the unit of control. The presented concepts can be applied to any data model with support to composite objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the methodologies available for the detection of positive selection from genomic data vary in terms of assumptions and execution, weak correlations are expected among them. However, if there is any given signal that is consistently supported across different methodologies, it is strong evidence that the locus has been under past selection. In this paper, a straightforward frequentist approach based on the Stouffer Method to combine P-values across different tests for evidence of recent positive selection in common variations, as well as strategies for extracting biological information from the detected signals, were described and applied to high density single nucleotide polymorphism (SNP) data generated from dairy and beef cattle (taurine and indicine). The ancestral Bovinae allele state of over 440,000 SNP is also reported. Using this combination of methods, highly significant (P<3.17×10-7) population-specific sweeps pointing out to candidate genes and pathways that may be involved in beef and dairy production were identified. The most significant signal was found in the Cornichon homolog 3 gene (CNIH3) in Brown Swiss (P = 3.82×10-12), and may be involved in the regulation of pre-ovulatory luteinizing hormone surge. Other putative pathways under selection are the glucolysis/gluconeogenesis, transcription machinery and chemokine/cytokine activity in Angus; calpain-calpastatin system and ribosome biogenesis in Brown Swiss; and gangliosides deposition in milk fat globules in Gyr. The composite method, combined with the strategies applied to retrieve functional information, may be a useful tool for surveying genome-wide selective sweeps and providing insights in to the source of selection.