60 resultados para Genetically Modified Organisms
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars. © 2011 The Author(s).
Resumo:
The objective of this study was to verify application of two methodologies: substrate moistened with herbicide solution (SM) and immersion of seeds in herbicide solution (IH) for detecting soybean seeds genetically modified. For this, non-transgenic and transgenic soybean seeds, harvested in the 2008/2009 crop seasons were used. The treatments with substrate moistened were: SM1) 0.03% herbicide solution, at 25 ºC, with evaluation in the sixth day (hs -0.03% -25 ºC, 6th d); SM2) HS -0.03% -35 ºC, 5th d; SM3) HS -0.03% - 40 ºC, 5th d; and SM4) hs -0.06% -5 ºC, 5th d. In the methodology of immersion of seeds the following treatments were performed: IH1) seed immersion in a 0.6% herbicide solution, at 25 ºC, for 1 h, (si -0.06% -25 ºC, 1 h; IH2) si -0.06% - 35 ºC, 30 min.; IH3) si -0.06% -40 ºC, 30 min.; IH4) si -0.12% -35 ºC, 30 min.; and IH5) si -0.12% -40 ºC, 30 min. Bioassays allow detecting soybean seeds tolerant to glyphosate herbicide within five days. The seeds of non-genetically modified and genetically modified soybean cultivars may be easily distinguished through the treatments SM2 and SM4 of the moistened substrate methodology; and treatments IH3, IH4, and IH5 of seed immersion methodology. Both methodologies are easily feasible, practical, and applicable in seed analysis laboratories, once do not require special equipments.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Direito - FCHS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The introduction of new cotton cultivars in the Midwest region of Brazil resulted in a significant increase in productivity, but the use of inappropriate farming techniques brought many problems to field, as the higher incidence of pests, diseases and weeds. The aim of this work was to study the population dynamics of eggs and larvae of cotton leafworm and natural egg parasitism of the pest by Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) at different phenological stages of conventional and transgenic cultivars (Bollgard I) of cotton was carried out this experiment from December 2007 to April 2008 in Ipameri, Goias State, Brazil. The experimental design was a randomized blocks with five trataments and four replications. The treatments consisting of the conventional cotton cultivars DeltaOPAL, FMX 966, FMX 993, FMX 910 and the cultivar transgenic NuOPAL. Allabama argillacea Hubner (Lepidoptera: Noctuidae) oviposited on all cultivars, not presented differences in relation to oviposition preference. Compared to the average number of eggs of A. argillacea parasitized by T. pretiosum, there were no differences between cultivars. In conventional cultivars, small, medium and large larvae occurred from 34 days after plant emergence until the end of the cycle, while in the transgenic cultivar were found only small caterpillars. Cultivar NuOPAL control cotton leafworm since the first larval stage, and does not interfere in egg parasitism by T. pretiosum compared with other cultivars.
Resumo:
The fall armyworm, Spodoptera frugiperda (J. E. Smith), is one of the most important maize pests in the Americas and particularly in South America. With the adoption of genetically modified plants expressing Bacillus thuringiensis toxins for lepidopterous pest control, there is a need for establishing strategies to delay the development of insect resistance (e.g. refuge areas). Thus, information on target insects' dispersal is essential to improve pest management techniques. The objective of this work was to evaluate the dispersal capacity of S. frugiperda adults using mark-release-recapture techniques. Insects were marked using red oil-soluble dye in the larval artificial diet. Marked adults were released twice in each growing season (dry and wet) in southeastern Brazil in 2006 and 2007. Recapture of marked insects was performed using light and pheromone traps. Males are more attracted to light traps than females and the recapture rate was higher in the dry season than in the rainy season. The most adequate model to explain the relationship between flight distance and number of recaptured insects is y = a(2)/ (1+ (2a(1.8)+ bx))((2.6)), where y is the distance and x is the number captured. The maximum recapture distances were 806 m for males and 608 m for females. Therefore, strategies for establishment of refuges should take such distances into consideration.
Resumo:
The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety Vitória de Verão genetically modified.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)