44 resultados para General variable neighborhood search
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This work deals with the sequencing of Multi-Mixed-Model Assembly Lines in a lean manufacturing environment, where an operational structure where several kanbans support several mixed-model assembly lines, so that all assembly lines can receive parts or sub-assemblies from all suppliers. To optimize this system, the sequencing seeks to minimize the distance between the real consumption and the constant ideal consumption of parts or subassemblies, thereby reducing the scaling of kanbans and intermediate stocks. To solve the sequencing problems, the method Clustering Search was applied along with the metaheuristics Variable Neighborhood Search, Simulation Annealing and Iterative Local Search. Instances from the literature and generated instances were tested, thus allowing comparing the methods to each other and with other methods presented in the literature. The performance of the Clustering Search with Iterated Local Search stands out by the quality and robustness of their solutions, and mainly for its efficiency, whereas it converges to better results at a lower computational cost
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an efficient tabu search algorithm (TSA) to solve the problem of feeder reconfiguration of distribution systems. The main characteristics that make the proposed TSA particularly efficient are a) the way in which the neighborhood of the current solution was defined; b) the way in which the objective function value was estimated; and c) the reduction of the neighborhood using heuristic criteria. Four electrical systems, described in detail in the specialized literature, were used to test the proposed TSA. The result demonstrate that it is computationally very fast and finds the best solutions known in the specialized literature. © 2012 IEEE.