6 resultados para Gene Rearrangement
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In flowering plants, alternative oxidase (Aox) is encoded by 3-5 genes distributed in 2 subfamilies (Aox1 and Aox2). In several species only Aox1 is reported as a stress-responsive gene, but in the leguminous Vigna unguiculata Aox2b is also induced by stress. In this work we investigated the Aox genes from two leguminous species of the Medicago genus (Medicago sativa and Medicago truncatula) which present one Aox1, one Aox2a and an Aox2b duplication (named here Aox2b1 and Aox2b2). Expression analyses by semi-quantitative RT-PCR in M. sativa revealed that Aox1, Aox2b1 and Aox2b2 transcripts increased during seed germination. Similar analyses in leaves and roots under different treatments (SA, PEG, H2O2 and cysteine) revealed that these genes are also induced by stress, but with peculiar spatio-temporal differences. Aox1 and Aox2b1 showed basal levels of expression under control conditions and were induced by stress in leaves and roots. Aox2b2 presented a dual behavior, i.e., it was expressed only under stress conditions in leaves, and showed basal expression levels in roots that were induced by stress. Moreover, Aox2a was expressed at higher levels in leaves and during seed germination than in roots and appeared to be not responsive to stress. The Aox expression profiles obtained from a M. truncatula microarray dataset also revealed a stress-induced co-expression of Aox1, Aox2b1 and Aox2b2 in leaves and roots. These results reinforce the stress-inducible co-expression of Aox1/Aox2b in some leguminous plants. Comparative genomic analysis indicates that this regulation is linked to Aox1/Aox2b proximity in the genome as a result of the gene rearrangement that occurred in some leguminous plants during evolution. The differential expression of Aox2b1/2b2 suggests that a second gene has been originated by recent gene duplication with neofunctionalization. © 2013 Elsevier GmbH. All rights reserved.
Resumo:
Leukemia is a genetic disease from a noncontrolled abnormal process of the hematopoietic cells' differentiation and proliferation. Some alterations of structure and number of chromosomes have been well and specifically observed in leukemia. The detection of these alterations is highly significant in providing the patients' diagnosis, prognosis and treatment as well as the understanding of the genetic bases of this disease. The purpose of this work is to study some chromosomal alterations in peripheral blood and/or bone marrow in patients with different leukemia types by means of conventional cytogenetic techniques, and also to investigate the presence of BCR/ABL gene rearrangement and some alterations in chromosome 20 by the FISH technique. Samples of peripheral blood and/or bone marrow of 28 patients, who were not under chemoor radio-therapeutic treatment, were studied: 15 with CML, 11 with AML and 2 with ALL. The alteration most frequent was t(9;22) in the CML, whose presence or absence was related to a good or bad prognosis, respectively. A case of AMI showed inv(16)(p13q22), related to a good prognosis. Some alterations not reported previously in the literature were found, such as the trisomy in chromosome 2 associated to chromosome Ph showing some disease progress in one of the CML cases and t(5;16)(q13;q22) in an AML patient. One of the cases was submitted to an allogeneic hone marrow transplant. The monitoring after the 23 rd day of transplant, detected 95% of the donor cells suggesting the procedure had succeeded. Two patients, an AMI and the other ALL, showed trisomy of chromosome 20 in the neoplastic cells. The results showed the importance of the cytogenetic analysis in relation to leukemia, its direct benefits to the patients and the biological mechanisms involved in this disease. They also allowed the introduction in the Genetic Service of FAMERP techniques to obtain the bone marrow metaphases and the FISH technique.
Resumo:
Background: Despite the extensive polymorphism at the merozoite surface protein-1 (MSP-1) locus of Plasmodium falciparum, that encodes a major repetitive malaria vaccine candidate antigen, identical and nearly identical alleles frequently occur in sympatric parasites. Here we used microsatellite haplotyping to estimate the genetic distance between isolates carrying identical and nearly identical MSP-1 alleles. Methods: We analyzed 28 isolates from hypoendemic areas in north-western Brazil, collected between 1985 and 1998, and 23 isolates obtained in mesoendemic southern Vietnam in 1996. MSP-1 alleles were characterized by combining PCR typing with allele-specific primers and partial DNA sequencing. The following single-copy microsatellite markers were typed: Polyα, TA42 (only for Brazilian samples), TA81, TA1, TA87, TA109 (only for Brazilian samples), 2490, ARAII, PfG377, PfPK2, and TA60. Results: The low pair-wise average genetic distance between microsatellite haplotypes of isolates sharing identical MSP-1 alleles indicates that epidemic propagation of discrete parasite clones originated most identical MSP-1 alleles in parasite populations from Brazil and Vietnam. At least one epidemic clone propagating in Brazil remained relatively unchanged over more than one decade. Moreover, we found no evidence that rearrangements of MSP-1 repeats, putatively created by mitotic recombination events, generated new alleles within clonal lineages of parasites in either country. Conclusion: Identical MSP-1 alleles originated from co-ancestry in both populations, whereas nearly identical MSP-1 alleles have probably appeared independently in unrelated parasite lineages.
Resumo:
Investigation of the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia patients is essential to predict prognosis and survival. In 20 patients treated at the Bone Marrow Transplantation Unit of São José do Rio Preto (São Paulo, Brazil), we used fluorescence in situ hybridization (FISH) to investigate the frequency of cells with BCR/ABL rearrangement at diagnosis and at distinct intervals after allo-HSCT until complete cytogenetic remission (CCR). We investigated the disease-free survival, overall survival in 3 years and transplant-related mortality rates, too. Bone marrow samples were collected at 1, 2, 3, 4, 6, 12, and 24 months after transplantation and additional intervals as necessary. Success rate of the FISH analyses was 100%. CCR was achieved in 75% of the patients, within on average of 3.9 months; 45% patients showed CCR within 60 days after HSCT. After 3 years of the allo-HSCT, overall survival rate was 60%, disease-free survival was 50% and the transplant-related mortality rate was 40%. The study demonstrated that the BCR-ABL FISH assay is useful for follow-up of chronic myeloid leukemia patients after HSCT and that the clinical outcome parameters in our patient cohort were similar to those described for other bone marrow transplantation units. ©FUNPEC-RP.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)