147 resultados para Gauge fields (Physics)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Constrained systems in quantum field theories call for a careful study of diverse classes of constraints and consistency checks over their temporal evolution. Here we study the functional structure of the free electromagnetic and pure Yang-Mills fields on the front-form coordinates with the null-plane gauge condition. It is seen that in this framework, we can deal with strictu sensu physical fields.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Here we present a possible way to relate the method of covariantizing the gauge-dependent pole and the negative dimensional integration method for computing Feynman integrals pertinent to the light-cone gauge fields. Both techniques are applicable to the algebraic light-cone gauge and dispense with prescriptions to treat the characteristic poles.
Resumo:
In the usual and current understanding of planar gauge choices for Abelian and non-Abelian gauge fields, the external defining vector n(mu), can either be space-like (n(2) < 0) or time-like (n(2) > 0) but not light-like (n(2) = 0). In this work we propose a light-like planar gauge that consists of defining a modified gauge-fixing term, L-GF, whose main characteristic is a two-degree violation of Lorentz covariance arising from the fact that four-dimensional space-time spanned entirely by null vectors as basis necessitates two light-like vectors, namely n(mu) and its dual m(mu), with n(2) = m(2) = 0, n . m not equal 0, say, e.g. normalized to n . m = 2.
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A precise fomulation of the strong Equivalence Principle is essential to the understanding of the relationship between gravitation and quantum mechanics. The relevant aspects are reviewed in a context including General Relativity but allowing for the presence of torsion. For the sake of brevity, a concise statement is proposed for the Principle: An ideal observer immersed in a gravitational field can choose a reference frame in which gravitation goes unnoticed. This statement is given a clear mathematical meaning through an accurate discussion of its terms. It holds for ideal observers (time-like smooth non-intersecting curves), but not for real, spatially extended observers. Analogous results hold for gauge fields. The difference between gravitation and the other fundamental interactions comes from their distinct roles in the equation of force.
Resumo:
We construct non-relativistic Lagrangian field models by enforcing Galilean covariance with a (4, 1) Minkowski manifold followed by a projection onto the (3, 1) Newtonian spacetime. We discuss scalar, Fermi and gauge fields, as well as interactions between these fields, preparing the stage for their quantization. We show that the Galilean covariant formalism provides an elegant construction of the Lagrangians which describe the electric and magnetic limits of Galilean electromagnetism. Similarly we obtain non-relativistic limits for the Proca field. Then we study Dirac Lagrangians and retrieve the Levy-Leblond wave equations when the Fermi field interacts with an Abelian gauge field.
Resumo:
Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.
Resumo:
In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.
Resumo:
We seek new couplings of chiral bosons to U(1) gauge fields. Lorentz covariance of the resulting constrained lagrangian is checked with the help of a procedure based in the first-order formalism of Faddeev and Jackiw. We find Harada's constraint and another local one not previously considered. We analyze the constraint structure and part of the spectrum of this second solution and show that it is equivalent to an explicitly covariant coupling of Siegel's chiral boson to gauge fields, which preserves chirality under gauge transformations.
Resumo:
We consider an extension of the axial model where local gauge symmetries are taken into account. The result is a mixing of the axial and Schwinger models. The anomaly of the axial current is calculated by means of the Fujikawa path integral technique and the model is also solved. Besides the well-known features of the particular models (axial and Schwinger) an effective interaction of scalar and gauge fields via a topological current is obtained. This term is responsible for the appearance of massive poles in the propagators that are different from those of both models.