10 resultados para Gaseous fuel diffusion flames

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the construction of an axisymmetric nonpremixed piloted jet burner, with well-defined initial and boundary conditions, known as the Delft burner, to assess turbulence-chemistry interaction in non-premixed turbulent flames. Detailed experimental information is described, involving hot-wire anemometry, thin-wire thermocouples and chemiluminescence visualization measurements. Radial profile of the axial mean velocity indicates excellent agreement between flow patterns developed within Delft installation and the one described herein. Chemiluminescence emissions from CH and C2 free-radicals were acquired with a CCD camera. Tomography reconstruction analysis was utilised to compare radical emissions and temperature spatial distributions. There was a strong dependence between temperature and CH/C 2 emissions. This is an indication that these radicals can be used in flame front studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are presented and discussed of an experimental investigation on acetylene turbulent dual jet diffusion flames. The study includes parameters of flames in parallel, divergent and convergent configurations. Tests with two parallel jets with addition of helium in the fuel stream were also performed and analysed. The variation of overall flame length and of other name physical characteristics, such as width, volume and conditions for lifting, are presented as functions of burner tip Reynolds number, jet distance from each other and inclination angle. The effects of diluent concentration in the fuel gas stream are presented for single and two parallel jets. (C) 1999 Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsating combustion process has won interest in current research due to indications that its application in energy generation can offer several advantages, such as: fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with conventional techniques. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. The main conclusions were: a) the pulsating combustion process produces more uniform fuel/air profile than the non pulsating process, b) close to stoichiometric equivalence ratio the pulsating combustion process generates higher rates of NO x; c) the frequency has a strong influence in NO x emission, but the pressure amplitude has a weak influence; d) the presence of the acoustic field may change drastically the combustion gas emissions in diffusion flames, but in pre-mixed flames the influence is not as strong.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of oxygen to enrich the oxidizer can be an attractive alternate to increase incineration rates of a combustion chamber originally designed to operate with air. For a certain fuel now rate, if some incineration parameters are held constant (as combustion chamber temperature, turbulence level, and residence time), an increase of incineration rates becomes possible with injection of oxygen. This work presents a theoretical evaluation of combustion air enrichment in a combustion chamber designed to incinerate aqueous residues using methane as fuel and air as oxidizer. Detailed chemistry was employed to predict pollutants formation. The overall process was investigated using the PSR routine from the CHEMKIN library. (C) 1999 Elsevier B.V. Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsating combustion process has attracted interest in current research because its application in energy generation can offer several advantages, such as fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with other new techniques of combustion. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides, and soot presence in partial premixed flames in confined partially premixed liquefied petroleum gas flames. The results basically showed that a more uniform fuel/air mixture due to the presence of an acoustic field increases the NOx emissions in operations close to stoichiometric equivalence ratios and the frequency is the most important parameter. Carbon monoxide and soot reduced significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation of the noise generated by cavitation in turbulent shear flows produced by confined sharp-edge orifice-plates is reported. The acoustic source strength of cavitation was determined by means of reciprocity type measurements. Experimentally determined scaling parameters are applied to a model to prototype scaling formula derived from dimensional analysis. The proposed formula is checked experimentally. Comparative photographic observations of the cavitation patterns for two different values of gas content are presented. The observed sound reduction, that occurs when supersaturated conditions exist downstream the orifice-plates, is explained by the effects of gas diffusion into the cavitation bubbles, and by simple acoustic attenuation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)