13 resultados para Galileo mission
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
New Galileo signals have great potential for pseudorange-based surveying and mapping in both optimal open-sky conditions and suboptimal under-canopy environments. This article reviews the main features of Galileo's E5 AItBO( and El (BOC signals, describes generation of realistic E5 and El pseudoranges with and without multipath sources, and presents anticipated horizontal positioning accuracy results, ranging from 4 centimeters (open-sky) to 14 centimeters (under-canopy) for E5/El.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The gravitational capture was initially used to understand the capture of planetary satellites. However, in the 90's decade, this phenomenon was applied in spacecraft trajectories. Belbruno and Miller studied missions in the Earth-Moon system that uses this technique to save fuel during the insertion of the spacecraft in its final orbit around the Moon. Using a parameter defined as twice the two-body energy of the planet-particle system, Yamakawa also studied the gravitational capture in the Earth-Moon system. In the present paper, this technique is used to study a mission that goes to the Neptune system and perform a gravitational capture in the satellite Triton. The results show direct and retrograde trajectories, for different values of the initial conditions.
Resumo:
Taking benefit of the new Galileo ranging signals, the ENCORE (Enhanced Code Galileo Receiver) project aims to develop a low-cost Land Management Application to cover needs of the Brazilian market in terms of geo-referencing and rural/urban cadastre, using a low-cost Enhanced Galileo Code Receiver as baseline. Land management applications require precision and accuracy levels from a few to several decimetres that are under-met with current pseudorange-based receiver and over-met with phase observations. This situation leads either to a waste of resources, or to lack of accuracy. In this project, it is proposed to fill this gap using the new possibilities of the Galileo ranging signals, in particular E5 AltBOC and E1 CBOC. This approach reduces the cost of the end-user solution, helping the rapid penetration of Galileo technology outside Europe. ©2010 IEEE.
Resumo:
The first Brazilian mission to an asteroid is being planned. The target is the asteroid 2001 SN263, which has a NEA orbit of class AMOR. Spectral analysis indicated that this is a C-type asteroid. This type of asteroids are dark and difficult to be studied from Earth. They hold clues of the initial stages of planetary formation and also the origin of water and life on Earth. In fact, radar data showed that 2001 SN263 is composed of three bodies with diameters of about 2.8 km, 1.1 km and 0.4 km. Therefore, the spacecraft will have the opportunity to explore three bodies on the same trip. The mission is scheduled to be launched in 2015, reaching the asteroid in 2018. It will be used a small spacecraft (150 kg) with 30 kg for the payload. The set of scientific instruments being considered to explore the target of this mission include an Imaging Camera, a Laser Rangefinder, an Infrared Spectrometer, a Synthetic Aperture Radar and a Mass Spectrometer. The main measurements to be made include the bulk properties (size, shape, mass, density, dynamics, spin state), the internal properties (structure, gravity field) and surface properties (mineralogy, morphology, elemental composition). The mission also opens an opportunity for some relevant experiments, not directly related to the target. Two such experiments will take benefit from being on board of the spacecraft along the journey to the asteroid system, which will take about three years. The first is an astrobiology experiment. The main goal of this experiment is to determine the viability of the microorganisms survival in extraterrestrial environments simulated in laboratory (chemical atmosphere, temperature, desiccation, vacuum, microgravity and radiation). The second experiment is a plasma package. The main objectives of this experiment are to study the structure and electrodynamics of plasma along the trajectory, the plasma instability processes and the density and temperature of plasma of solar wind origin along the trajectory and near the asteroids. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission and details of the payload that will be used and the scientific expectations. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
2001 SN263 is a triple system asteroid. Although it was discovery in 2001, in 2008 astronomical observation carried out by Arecibo observatory revealed that it is actually a system with three bodies orbiting each other. The main central body is an irregular object with a diameter about 2.8 km, while the other two are small objects with less than 1 km across. This system presents an orbital eccentricity of 0.47, with perihelion of 1.04 and aphelion of 1.99, which means that it can be considered as a Near Earth Object. This interesting system was chosen as the target for the Aster mission - first Brazilian space exploration undertaking. A small spacecraft with 150 kg of total mass, 30 kg of payload with 110 W available for the instruments, is scheduled to be launched in 2015, and in 2018 it will approach and will be put in orbit of the triple system. This spacecraft will use electric propulsion and in its payload it will carry image camera, laser rangefinder, infrared spectrometer, mass spectrometer, and experiments to be performed in its way to the asteroid. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission, including the transfer trajectories to be used, and details of buss and payload subsystems that are being developed and will be used. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
In the paper we discuss the potential of the new Galileo signals for pseudorange based surveying and mapping in open areas under optimal reception conditions (open sky scenarios) and suboptimal ones (multipath created by moderate to thick tree coverage). The paper reviews the main features of the Galileo E5 AltBOC and E1 CBOC signals; describes the simulation strategy, models and algorithms to generate realistic E5 and E1 pseudoranges with and without multipath sources; describes the ionosphere modeling strategy, models and algorithms and discusses and presents the expected positioning accuracy and precision results. According to the simulations performed, pseudoranges can be extracted from the Galileo E5 AltBOC signals with tracking errors (1-σ level) ranging from 0.02 m (open sky scenarios) to 0.08 m (tree covered scenarios) whereas for the Galileo E1 CBOC signals the tracking errors range between 0.25 m to 2.00 m respectively. With these tracking errors and with the explicit estimation of the ionosphere parameters, simulations indicate real-time open sky cm-level horizontal positioning precisions and dm-level vertical ones and dm-level accuracies for both the horizontal and vertical position components.
Resumo:
In this paper we describe the development of a low-cost high-accuracy Galileo Code receiver, user application software and positioning algorithms for land management applications, which have been implemented using a dedicated FPGA board and dual frequency Galileo E5/L1 Radio Frequency Front-End. The current situation of rural property surveying in Brazil is described and the use of code measurements from the new Galileo signals E5 AltBOC combined with E1 MBOC for use in land management applications is explored. We explain how such approach is expected to allow delivering an absolute positioning solution which could bridge the gap between receivers of high cost/complexity/accuracy based on carrier phase and receivers of lower cost/accuracy based on pseudorange observables. The system is presented together with a detailed description of main components: the Code Receiver and the Application Software. The work presented is part of an ongoing European-Brazilian consortium effort to explore the use of new Galileo for land management applications in Brazil and sponsored by the GNSS Supervisory Authority (GSA).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.