5 resultados para GRAPHS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block diagrams and signal-flow graphs are used to represent and to obtain the transfer function of interconnected systems. The reduction of signal-flow graphs is considered simpler than the reduction of block diagrams for systems with complex interrelationships. Signal-flow graphs reduction can be made without graphic manipulations of diagrams, and it is attractive for a computational implementation. In this paper the authors propose a computational method for direct reduction of signal-flow graphs. This method uses results presented in this paper about the calculation of literal determinants without symbolic mathematics tools. The Cramer's rule is applied for the solution of a set of linear equations, A program in MATLAB language for reduction of signal-flow graphs with the proposed method is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we extend the use of the variance dispersion graph (VDG) to experiments in which the response surface (RS) design must be blocked. Through several examples we evaluate the prediction performances of RS designs in non-orthogonal block designs compared with the equivalent unblocked designs and orthogonally blocked designs. These examples illustrate that good prediction performance of designs in small blocks can be expected in practice. Most importantly, we show that the allocation of the treatment set to blocks can seriously affect the prediction properties of designs; thus, much care is needed in performing this allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variance dispersion graphs have become a popular tool in aiding the choice of a response surface design. Often differences in response from some particular point, such as the expected position of the optimum or standard operating conditions, are more important than the response itself. We describe two examples from food technology. In the first, an experiment was conducted to find the levels of three factors which optimized the yield of valuable products enzymatically synthesized from sugars and to discover how the yield changed as the levels of the factors were changed from the optimum. In the second example, an experiment was conducted on a mixing process for pastry dough to discover how three factors affected a number of properties of the pastry, with a view to using these factors to control the process. We introduce the difference variance dispersion graph (DVDG) to help in the choice of a design in these circumstances. The DVDG for blocked designs is developed and the examples are used to show how the DVDG can be used in practice. In both examples a design was chosen by using the DVDG, as well as other properties, and the experiments were conducted and produced results that were useful to the experimenters. In both cases the conclusions were drawn partly by comparing responses at different points on the response surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)