4 resultados para GPGPU
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Techniques of image combination, with extraction of objects to set a final scene, are very used in applications from photos montages to cinematographic productions. These techniques are called digital matting. With them is possible to decrease the cost of productions, because it is not necessary for the actor to be filmed in the location where the final scene occurs. This feature also favors its use in programs made to digital television, which demands a high quality image. Many digital matting algorithms use markings done on the images, to demarcate what is the foreground, the background and the uncertainty areas. This marking is called trimap, which is a triple map containing these three informations. The trimap is done, typically, from manual markings. In this project, methods were created that can be used in digital matting algorithms, with restriction of time and without human interaction, that is, the creation of an algorithm that generates the trimap automatically. This last one can be generated from the difference between a color of an arbitrary background and the foreground, or by using a depth map. It was also created a matting method, based on the Geodesic Matting (BAI; SAPIRO, 2009), which has an inferior processing time then the original one. Aiming to improve the performance of the applications that generates the trimap and of the algorithms that generates the alphamap (map that associates a value to the transparency of each pixel of the image), allowing its use in applications with time restrictions, it was used the CUDA architecture. Taking advantage, this way, of the computational power and the features of the GPGPU, which is massively parallel
Resumo:
Técnicas de reconhecimento de padrões tem como principal objetivo classificar um conjunto de amostras, sendo o processo de aprendizado a fase de maior consumo de tempo. O problema pode piorar em ferramentas de classificação interativas, o que pode ser inaceitável para grandes bases de dados. Um exemplo de classificador é o baseado em Floresta de Caminhos Ótimos [8] - OPF. Dado que muitos trabalhos tem sido orientados à implementação de algoritmos de reconhecimento de padrões em ambiente General Purpose Graphics Processing Unit - GPGPU, o presente estudo objetivou a implementação da etapa de treinamento do classificador Floresta de Caminhos Ótimos em CUDA, visando aumentar a sua eficiência. A otimização do classificador em CUDA demonstrou uma fase de treinamento mais rápida que a versão original.