174 resultados para GLUTAMINE METABOLISM
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The effect of Walker 256 tumour growth on the metabolism of glucose and glutamine in the small intestine of rats was examined. Walker 256 tumour has been extensively used as an experimental model to induce cancer cachexia in rats. Walker 256 tumour growth decreased body weight and small intestine weight and length. The activities of glucose-6-phosphate dehydrogenase and phosphate-dependent glutaminase were reduced in the proximal, median and distal portions of the intestine. Glutamine oxidation was reduced in the proximal portion only. The decrease in glutaminase activity was not due to a low synthesis of the protein as indicated by Western blotting analysis. Hexokinase and citrate synthase activities were not changed by the tumour. These findings led us to postulate that tumour growth impairs glutamine metabolism of small intestine but the mechanism involved remains to be elucidated. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Vanadium compounds mimic most of the metabolic effects of insulin, suggesting that it might be useful to improve utilization of dietary carbohydrate. This work evaluated the effect of dietary ammonium metavanadate (H(4)NO(3)V) on the growth performance and energy metabolism of pacu, an omnivorous South America characin. Two hundred and eighty-eight fish were distributed into four blocks according to the body weight (21.8 +/- 1.7, 28.5 +/- 2.0, 28.4 +/- 1.9, 35.7 +/- 1.9 g), stocked in 24 plastic tanks and fed twice daily with isonitrogenous and isoenergetic diets containing six levels of H(4)NO(3)V (0, 10, 50, 100, 300 and 1000 mg kg(-1)) for 60 days. Increasing levels of dietary ammonium metavanadate did not improve growth (P > 0.05), and the highest level of inclusion (1000 mg kg(-1)) reduced performance (P < 0.05). Blood glucose levels decreased (P < 0.05) in fish fed 300 and 1000 mg kg(-1) H(4)NO(3)V, but no differences were observed in other blood metabolites. A slight increase in muscle lipid content was observed in fish fed a diet containing 300 mg kg(-1) H(4)NO(3)V. Based on the results of this study, there is no benefit in supplementing pacu diets with metavanadate.
Resumo:
O objetivo deste trabalho foi testar se grupos monossexuais de machos gastam mais energia e exibem perfil agonístico diferente de grupos formados por um macho e uma fêmea na tilápia-do-Nilo (Oreochromis niloticus). Tais diferenças são esperadas, pois machos e fêmeas competem por diferentes recursos reprodutivos. Foram utilizadas duplas de machos (MM) e duplas de macho-fêmea (MF) que permaneceram pareadas por 40 minutos. Durante esse período foi feito o registro da interação agonística (10 minutos iniciais e 10 minutos finais do pareamento) e determinado o gasto energético (consumo de O2) pelo Método de Winckler. A latência para o início dos confrontos (média ± DP, MM = 27,40 ± 25,15 s; MF = 14,22 ± 21,19 s; Mann-Whitney, U = 33,50, P = 0,21) e a freqüência de todas as unidades comportamentais (média ± DP, MM < 72,30 ± 25,29; MF < 73,50 ± 21,65.10/min; Mann-Whitney, P > 0,10) foram semelhantes entre os grupos MM e MF nos 10 minutos iniciais. Isso indica que cada intruso foi considerado um potencial competidor no início da interação. No entanto, a freqüência de ondulação (interação também exibida durante a corte) foi maior para o residente do grupo MF nos 10 minutos finais (média ± DP, MM = 3,56 ± 5,89; MF = 8,56 ± 4,00.10/min; Mann-Whitney, U = 15,50, P = 0,01). A freqüência de fuga, entretanto, foi menor para o intruso do mesmo grupo (média ± DP, MM = 3,90 ± 4,33; MF = 0,44 ± 0,96.10/min; Mann-Whitney, U = 23,50, P = 0,04). Além disso, o perfil agonístico no grupo MM foi composto por um maior número de itens comportamentais do que o MF (para residentes e intrusos). Apesar das diferenças comportamentais, o consumo de O2 não foi afetado pela composição sexual do grupo (média ± DP, MM = 1,93 ± 0,54; MF = 1,77 ± 0,46 mgO2.g peso seco-1.40/min; t-teste de Student, t = 0,71, P = 0,49).
Resumo:
Atta sexdens L, ante feed on the Fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds lay the ants, This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.
Resumo:
Laboratory colonies of the leaf-cutting ants Atta sexdens feed daily with leaves of Ipomoea batatas showed ant mortality and a significant decrease in the size of the fungal garden after the second week, with complete depletion of nests after 5 weeks of treatment. The mean oxygen consumption rate of these ants was higher than the control (ants collected from nests feed with leaves of Eucalyptus alba), suggesting a physiological action of the leaves of I. batatas on the ants in addition to the effect of inhibiting the growth of the fungal garden.
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The respiratory metabolism of immature forms (eggs, larvae, prepupae and pupae) of Camponotus rufipes (Hymenoptera: Formicidae) was studied at 25 degrees C, using a Warburg respirometer. Mean respiratory rates (mu l O gamma mg(-1) live weight.hr(-1)) for eggs, first instars, second instars, third instars, fourth instars, prepupae, and pupae were respectively: 2.53, 5.07, 1.23, 0.32, 0.22, 0.19 and 0.13. Adult workers with body mass between 20 and 30 mg had a mean respiratory rate of 0.43. The high respiratory rate in first instars probably reflects, besides the size influence, the metabolic costs of differentiation that occurs in this phase. (C) 1998 Published by Elsevier B.V.
Resumo:
Six hundred and forty one-day-old Cobb male broilers were used to evaluate ornithine decarboxylase (ODC) expression in the mucosa of the small intestine. Birds were submitted to early feed restriction from 7 to 14 days of age. The provided feed was supplemented with glutamine. A completely randomized design with a 2 x 2 factorial arrangement was used (with or without glutamine, with or without feed restriction). Restricted-fed birds were fed at 30% the amount of the ad libitum fed group from 7 to 14 days of age. Glutamine was added at the level of 1% in the diet supplied from 1 to 28 days of age. Protein concentration in the small intestine mucosa was determined, and ODC expression at 7, 14, 21, and 28 days of age was evaluated by dot blotting. ODC was present in the mucosa of broilers, and the presence of glutamine in the diet increased ODC activation. Glutamine prevented mucosa atrophy by stimulating protein synthesis, and was effective against the effects of feed restriction. Dot blotting can be used to quantify ODC expression in the intestinal mucosa of broilers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor), Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.
Resumo:
As all herbicides act on pathways or processes crucial to plants, in an inhibitory or stimulatory way, low doses of any herbicide might be used to beneficially modulate plant growth, development, or composition. Glyphosate, the most used herbicide in the world, is widely applied at low rates to ripen sugarcane. Low rates of glyphosate also can stimulate plant growth (this effect is called hormesis). When applied at recommended rates for weed control, glyphosate can inhibit rust diseases in glyphosate-resistant wheat and soybean. Fluridone blocks carotenoid biosynthesis by inhibition of phytoene desaturase and is effective in reducing the production of abscisic acid in drought-stressed plants. Among the acetolactate synthase inhibitors, sulfometuron-methyl is widely used to ripen sugarcane and imidazolinones can be used to suppress turf species growth. The application of protoporphyrinogen oxidase inhibitors can trigger plant defenses against pathogens. Glufosinate, a glutamine syntherase inhibitor, is also known to improve the control of plant diseases. Auxin agonists (i.e., dicamba and 2,4-D) are effective, low-cost plant growth regulators. Currently, auxin agonists are still used in tissue cultures to induce somatic embryogenesis and to control fruit ripening, to reduce drop of fruits, to enlarge fruit size, or to extend the harvest period in citrus orchards. At low doses, triazine herbicides stimulate growth through beneficial effects on nitrogen metabolism and through auxin-like effects. Thus, sublethal doses of several herbicides have applications other than weed control.
Resumo:
Obesity is rampant in modern society and growth hormone (GH) could be useful as adjunct therapy to reduce the obesity-induced cardiovascular damage. To investigate GH effects on obesity, initially 32 male Wistar rats were divided into two groups (n = 16): control (C) was fed standard-chow and water and hyper-caloric (H) was fed hypercaloric chow and 30% sucrose in its drinking water. After 45 days, both C and H groups were divided into two subgroups (n = 8): C + PL was fed standard-chow, water and received saline subcutaneously; C + GH was fed standard-chow, water, and received 2 mg/kg/day GH subcutaneously; H + PL was fed hypercaloric diet, 30% sucrose in its drinking water, and received saline subcutaneously; and H + GH was fed hypercaloric diet, 30% sucrose in its drinking water, and received GH subcutaneously. After 75 days of total experimental period, H + PL rats were considered obese, having higher body weight, body mass index, Lee-index, and atherogenic index (AI) compared to C + PL. Obesity was accompanied by enhanced myocardial lipid hydroperoxide (LH) and lactate dehydrogenase (LDH), as well of depressed energy expenditure (RMR) and oxygen consumption(VO(2))/body weight. H + GH rats had higher fasting RMR, as well as lower AI and myocardial LH than H + PL. Comparing C + GH with C + PL, despite no effects on morphometric parameters, lipid profile, myocardial LH, and LDH activity, GH enhanced fed RMR and myocardial pyruvate dehydrogenase. In conclusion, the present study brought new insights into the GH effects on obesity related cardiovascular damage demonstrating, for the first time, that GH regulated cardiac metabolic pathways, enhanced energy expenditure and improved the lipid profile in obesity condition. Growth hormone in standard fed condition also offered promising therapeutic value enhancing pyruvate-dehydrogenase activity and glucose oxidation in cardiac tissue, thus optimizing myocardial energy metabolism.