31 resultados para GFR
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Bothrops jararacussu myotoxin I (BthTx-I; Lys 49) and II (BthTX-II; Asp 49) were purified by ion-exchange chromatography and reverse phase HPLC. In this work we used the isolated perfused rat kidney method to evaluate the renal effects of B. jararacussu myotoxins I (Lys49 PLA(2)) and II (Asp49 PLA(2)) and their possible blockage by indomethacin. BthTX-1 (5 mu g/ml) and BthTX-II (5 mu g/ml) increased perfusion pressure (PP; ct(120) = 110.28+/-3.70 mmHg; BthTX I = 171.28+/-6.30* mmHg; BthTX II = 175.50+/-7.20* mmHg), renal vascular resistance (RVR; ct(120) = 5.49+/-0.54 mmHg/ml.g(-1) min(-1); BthTX I = 8.62+/-0.37* mmHg/ml g(-1) min(-1); BthTX II=8.9+/-0.36* mmHg/ml g(-1) min(-1)), urinary flow (UF; ct(120)= 0.14+/-0.01 ml g(-1) min(-1); BthTX I=0.32+/-0.05* ml g(-1) min(-1); BthTX II=0.37+/-0.01* ml g(-1) min(-1)) and glomerular filtration rate (GFR; ct(120)=0.72+/-0.10 ml g(-1) min(-1); BthTX I=0.85+/-0.13* ml g(-1) min(-1); BthTX II=1.22+/-0.28* ml g(-1) min(-1)). In contrast decreased the percent of sodium tubular transport (%TNa+; ct(120)=79,76+/-0.56; BthTX I=62.23+/-4.12*; BthTX II=70.96+/-2.93*) and percent of potassium tubular transport (%TK+;ct(120)=66.80+/-3.69; BthTX I=55.76+/-5.57*; BthTX II=50.86+/-6.16*). Indomethacin antagonized the vascular, glomerular and tubular effects promoted by BthTX I and it's partially blocked the effects of BthTX II. In this work also evaluated the antibacterial effects of BthTx-I and BthTx-II against Xanthomonas axonopodis. pv. passiflorae (Gram-negative bacteria) and we observed that both PLA2 showed antibacterial activity. Also we observed that proteins Also we observed that proteins chemically modified with 4-bromophenacyl bromide (rho-BPB) decrease significantly the antibacterial effect of both PLA(2). In conclusion, BthTx I and BthTX II caused renal alteration and presented activity antimicrobial. The indomethacin was able to antagonize totally the renal effects induced by BthTx I and partially the effects promoted by BthTx II, suggesting involvement of inflammatory mediators in the renal effects caused by myotoxins. In the other hand, other effects could be independently of the enzymatic activity of the BthTX II and the C-terminal domain could be involved in both effects promoted for PLA(2). (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as lV-1 to IV-5, from which lV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2)) venom (10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n = 6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Introduction .The renal prostaglandins (PGs), vasodilators, preserve kidney function during increased activity of the renin-angiotensin system or renal sympathetic nerves (renal PG-dependent state [RPGD]). Ketoprofen (Ket) inhibits cyclooxygenase and, therefore, the synthesis of PGs. The aim of this study was to determine, in the rat, the action of Ket in the renal histology and function in a RPGD state (stress of anesthesia and hemorrhage). Material and Methods . Twenty male Wistar rats, anesthetized with sodium pentobarbital, were randomly divided into two groups: G1-control ( n = 10) and G2-Ket ( n = 10) submitted to arterial hemorrhage of 30% of volemia (estimated as 6% of body weight) three times (10% each 10 min), 65 min after anesthesia. G2 animals received Ket, 1.5 mg. kg -1 , venously, 5 min after anesthesia and 60 min before the first hemorrhage moment (first moment of the study [M1]). Medium arterial pressure (MAP), rectal temperature (T), and heart rate were monitored. G1 and G2 received para-aminohippurate sodium (PAH) and iothalamate sodium (IOT) solutions during the entire experimental time in order to determine clearance of PAH (effective renal plasma flow [ERPF]) and clearance of IOT (glomerular filtration rate [GFR]) without urine collection (determination of blood concentrations of PAH and IOT through the high-performance liquid chromatography), filtration fraction (FF), and renal vascular resistance (RVR). The animals were sacrificed in M3, 30 min after the third hemorrhage (M2) moment, and the kidneys and blood collected during the hemorrhage periods were utilized for histological study and determinations of hematocrit (Ht), serum creatinine (S Cr ), ERPF, GFR, FF, and RVR, respectively. Results . There were significant reductions of MAP, T, and Ht and a significant increase of S Cr . During the experiment, ERPF and GFR did not change, but ERPF was always higher in G1 than in G2. Ket did not alter FF, which increased in G1 over the duration of experiment. The Ket group had significantly higher RVR than the control group. The histology verified that both G1 and G2 were similar for tubular dilation and necrosis, but they were significantly different for tubular degeneration: G1 > G2. Conclusion . The changes observed in kidney histology probably were determined by hemorrhage and hypotension. Ket inhibited the synthesis of PGs and diminished tubular degeneration.
Resumo:
Background. Considering the renal effects of fluid resuscitation in hemorrhaged patients, the choice of fluid has been a source of controversy. In a model of hemorrhagic shock, we studied the early hemodynamic and renal effects of fluid resuscitation with lactated Ringer's (LR), 6% hydroxyethyl starch (HES), and 7.5% hypertonic saline (HS) with or without 6% dextran-70 (HSD).Materials and methods. Forty-eight dogs were anesthetized and submitted to splenectomy. An estimated 40% blood volume was removed to maintain mean arterial pressure (MAP) at 40 mm Hg for 30 min. The dogs were divided into four groups: LR, in a 3:1 ratio to removed blood volume; HS, 6 mL kg(-1); HSD, 6 mL kg(-1); and HES in a 1:1 ratio to removed blood volume. Hemodynamics and renal function were studied during shock and 5, 60, and 120 min after fluid replacement.Results. Shock treatment increased MAP similarly in all groups. At 5 min, cardiac filling pressures and cardiac performance indexes were higher for LR and HES but, after 120 min, there were no differences among groups. Renal blood flow and glomerular filtration rate (GFR) were higher in LR at 60 min but GFR returned to baseline values in all groups at 120 min. Diuresis was higher for LR at 5 min and for LR and HES at 60 min. There were no differences among groups in renal variables 120 min after treatment.Conclusions. Despite the immediate differences in hemodynamic responses, the low-volume resuscitation fluids, HS and HSD, are equally effective to LR and HES in restoring renal performance 120 min after hemorrhagic shock treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Avaliar a cistatina C como marcador de função renal em pacientes submetidos à cirurgia de cardíaca com circulação extracorpórea, comparando com a dosagem sérica de creatinina. MÉTODOS: Foram analisados 50 pacientes consecutivos submetidos à cirurgia de revascularização do miocárdio. A função renal foi avaliada com a dosagem sérica de cistatina C e de creatinina no pré-operatório, no primeiro e no quinto dia de pós-operatório. Foram utilizadas as fórmulas de Cockcroft-Gault (CG) e Modification of Diet in Renal Disease (MDRD) para calcular a taxa de filtração glomerular estimada (TFG) através da creatinina, e a fórmula de Larsson para a TFG estimada através da cistatina C (TFG-Cis). RESULTADOS: A creatinina e o TFG através das fórmulas de CG e MDRD não mostraram diferença significativa nos momentos estudados. Após a agressão renal pela cirurgia, houve um aumento da cistatina C no 1º e 5º pós-operatório, sendo que no 5º pós-operatório com diferença estatisticamente significativa (P < 0,01). Houve uma queda da TFG estimada pela cistatina C de 105,2 ± 41,0 ml/min, no pré-operatório, para 89,5 ± 31,5 ml/min no 5º dia pós-operatório (P < 0,012). CONCLUSÃO: A cistatina C e a TFG-Cis apresentaram mudanças significativas no pós-operatório de cirurgia de revascularização do miocárdio quando comparadas a creatinina e a respectiva TFG estimada pelas fórmulas de Cockcroft-Gault e MDRD
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
JUSTIFICATIVA E OBJETIVOS: O objetivo desta pesquisa foi estudar os efeitos agudos do contraste radiológico em situações de restrição de volume, avaliando-se os efeitos renais e cardiovasculares após a injeção intra-arterial de contraste radiológico de alta osmolaridade. MÉTODO: Participaram do estudo 16 cães anestesiados com tiopental sódico (15 mg.kg-1) e fentanil (15 µg.kg-1) em bolus, seguido de infusão contínua nas doses de 40 µg.kg-1.min-1 (tiopental sódico) e 0,1 µg.kg-1.min-1 (fentanil). Foi feita hidratação com solução de glicose a 5% (0,03 mL.kg-1.min-1) e a ventilação pulmonar foi controlada mecanicamente com ar comprimido. Foram verificados os seguintes atributos: freqüência cardíaca (FC); pressão arterial média (PAM); pressão da veia cava inferior (PVI); débito cardíaco (DC); hematócrito (Ht); fluxo plasmático efetivo renal (FPER); fluxo sangüíneo renal (FSR); ritmo de filtração glomerular (RFG); fração de filtração; resistência vascular renal (RVR); volume urinário (VU); osmolaridade plasmática e urinária; depuração osmolar, depuração de água livre e depuração de sódio e de potássio; sódio e potássio plasmáticos; excreção urinária e fracionária de sódio e potássio e temperatura retal. Estes atributos foram avaliados em quatro momentos: 30 (M1), 60 (M2), 90 (M3) e 120 (M4) minutos após o início da infusão de para-aminohipurato de sódio e creatinina (início da experiência). No momento 2, no grupo G1 foi feita injeção intra-arterial de solução fisiológica a 0,9% (1,24 mL.kg-1), e no grupo G2 foi injetado contraste radiológico (1,24 mL.kg-1) pela mesma via. RESULTADOS: O grupo G1 apresentou aumento da FC, do FPER, do FSR, da osmolaridade plasmática, da depuração de sódio e da excreção urinária de sódio; apresentou ainda diminuição da osmolaridade urinária, do potássio plasmático, da depuração de potássio e da temperatura retal. No grupo G2 ocorreu aumento da FC, da RVR, do VU, da depuração osmolar, da depuração de sódio e da excreção urinária e fracionária de sódio; ocorreu também redução do (a): hematócrito, ritmo de filtração glomerular, fração de filtração, osmolaridade urinária, depuração de água livre, sódio e potássio urinários, potássio plasmático e temperatura retal. CONCLUSÕES: Neste estudo, conclui-se que a injeção intra-arterial do contraste radiológico causou efeito bifásico na função renal. Inicialmente, provocou aumento da diurese e da excreção de sódio, mas, posteriormente, houve piora das condições hemodinâmicas e, conseqüentemente, da função renal, com aumento da resistência vascular renal e diminuição do ritmo de filtração glomerular.
Resumo:
The venom of Bothrops insidaris snake, known in Brazil as jararaca ilhoa, contains a variety of proteolytic enzymes such as a thrombin-like substance that is responsible for various pharmacological effects. B. insularis venom chromatography profile showed an elution of seven main fractions. The thrombin-like activity was detected in fractions I and 111, the latter being subjected to two other chromatographic procedures, so to say DEAE and Hi Trap Benzamidine. The purity degree of this fraction was confirmed by analytical reverse phase HPLC, which displayed only one main fraction confirmed by SDS-PAGE constituting fraction III. About 5 mu g of fraction III protein potentiated the secretion of insulin induced by 2.8mM of glucose in rats isolated pancreatic beta-cells treated; the increase being around 3-fold higher than its respective control. B. insidaris lectin (BiLec; 10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused rat kidneys with the use of six Wistar rats. BiLec increased perfusion pressure (PP), renal vascular resistence (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, the thrombin-like substance isolated from B. insularis venom induced an increase in insulin secretion, in vitro, and transiently altered vascular, glomerular and tubular parameters in the isolated rat kidney. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the participation of the beta-adrenoceptors of the septal area (SA) in sodium and potassium excretion and urine flow. The alterations in arterial pressure and some renal functions were also investigated. The injection of 2.10(-9) to 16.10(-9)M of isoproterenol, through a cannula permanently implanted into the SA produced a significant dose-dependent decrease in urinary Na+ and K+ excretion and urinary flow. Pretreatment with 16.10(-9) M butoxamine antagonized the effect of 4.10(-9) M isoproterenol but pretreatment with 16.10(-9) M practolol did not abolish the effect of isoproterenol. The beta 2-agonist terbutaline and salbutamol (4.10(-9) M when injected intraseptally also caused a decrease in urine flow and in renal Na+ and K+ excretion. After injection of isoproterenol or salbutamol (4.10(-9) M) into the SA, the arterial pressure, glomerular, filtration rate (GFR) and filtered Nd were reduced while Na+ fractional reabsorption was increased. The results indicate that the beta 2-adrenoceptors of the SA play a role in the decrease of Na+, K+ and urine flow and this effect may be due to a drop in GFR and filtered Na+ and to the rise in tubular Na+ reabsorption.
Resumo:
Little research has been done with propofol in relation to renal function. The aim of this study was to evaluate the effects of the continuous infusion of propofol on renal function in dogs. Sixteen dogs, previously anesthetized with pentobarbital sodium (30 mg.kg-1) for surgical preparation, catheterism and monitoring, were studied. The dogs were mechanically ventilated with air and received alcuronium (0.2 mg.kg-1 in bolus and 0.06 mg.kg-1 - maintenance). The following parameters were studied: heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), aortic blood flow (A(o)BF - by electromagnetic flowmeter installed in the ascending aortic), aortic vascular resistance index (A(o)VRI), renal plasma flow (ERPF - by para-aminohipurate clearance), glomerular filtration rate (GFR - by creatinine clearance), effective renal blood flow (ERBF = ERPF/1 - hematocrit), urinary volume (UV), renal vascular resistance (RVR = MAP.80/ERBF.10-3), urinary sodium excretion (UE(Na)), fractionated sodium excretion (FE(Na)), osmolar clearance (C(osm)) and free water clearance (C(H2O)). These parameters were studied at 15 (M1), 30 (M2), 45 (M3) and 60 (M4) min after beginning pentobarbital sodium infusion (5 mg.kg-1.h-1). The dogs were allocated into two groups of eight animals each: G1 (control-pentobarbital sodium) and G2 (propofol). In G1, pentobarbital was given at the four times studied. G2 dogs received the same treatment as G1 dogs at M1 and M2; infusion of pentobarbital was substituted by propofol (3 mg.kg-1 bolus, followed by 12 mg.kg-1.h-1 continuous infusion) at M3 and M4. Profile Analysis was used to analyze the results statistically. In G1 (pentobarbital), there was a significant increase in RVR (M1 < M4) and a decrease in ERPF and ERBF (M1 > M4). In G2 (propofol) there was only a significant increase in A(o)BF (M1 < M2 = M3). In comparison among groups, these was a significant alteration of FE(Na) at M3 (pentobarbital > propofol). It was observed that the continuous infusion of propofol in dogs, at the given doses, did not alter the basic variables of renal function and hemodynamics studied. We concluded that propofol can be one of the drugs of choice to provide base anesthesia in studies of renal function in dogs.
Resumo:
Acute renal failure is the most common complication in the lethal cases caused by snakebites in Brazil. Among the Brazilian venom snakes, Bothrops erythromelas is responsible for the majority of accidents in Northeastern Brazil. Didelphis marsupialis serum could inhibit myonecrotic, hemorrhagic, edematogenic hyperalgesic and lethal effects of envenomation determined by ophidian bites. In the present study, we evaluated the action of the anti-bothropic factor isolated from D. marsupialis on the renal effects promoted by B. erythromelas venom without systemic interference. Isolated kidneys from Wistar rats were perfused with Krebs-Henseleit solution containing 6% bovine serum albumin. We analyzed renal perfusion pressure (PP), renal vascular resistance (RVR), glomerular filtration rate (GFR), urinary flow (UF), and the percentages of sodium and potassium tubular transport (%TNa +, %TK +). The B. erythromelas venom (10 μg mL -1) decreased the PP (ct=108.71±5.09 mmHg; BE=65.21±5.6 mmHg*) and RVR (ct=5.76±0.65 mmHg mL -1 g -1 min -1; BE=3.10±0.45 mmHg mL -1 g -1 min -1*) . On the other hand, the GFR decreased at 60 min (ct 60=0.76±0. 07 mL g -1 min -1; BE 60=0.42±0.12 mL g -1 min -1*) and increased at 120 min (ct 120=0.72±0.01 mL g -1 min -1; BE 120=1.24±0.26 mL g -1 min -1*). The UF increased significantly when compared with the control group (ct=0.14±0.01 mL g -1 min -1; BE=0.47±0.08 mL g -1 min -1*). The venom reduced the %TNa + (ct 90=79.18±0.88%; BE 90=58.35±4.86%*) and %TK + (ct 90=67.20±4.04%; BE 90=57. 32±5.26%*) The anti-bothropic factor from D. marsupialis (10 μg mL -1) incubated with B. erythromelas venom (10 μg mL -1) blocked the effects on PP, RVR, %TNa +, and %TK +, but was not able to reverse the effects in UF and GFR promoted by venom alone. However, the highest concentration of D. marsupialis serum (30 μg mL -1) reversed all the renal effects induced by the venom. In conclusion, B. erythromelas venom altered all the renal functional parameters evaluated and the anti-bothropic factor from D. marsupialis was able to inhibit the effects induced by the venom in isolated kidney. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The chronic kidney disease (CKD) it is characterized by irreversible structural lesions that can develop progressively for uremia and chronic renal failure (CRF). In the CRF it happens the incapacity of executing the functions of maintenance of the electrolyte balance and acid-base, catabolitos excretion and hormonal regulation appropriately. When the mechanism basic physiopathology of the renal upset is analyzed, it is observed that present factors, predispose to the unbalance oxidative. Most of the time, the renal patient comes badly nurtured, with lack in reservations of vitamins and minerals, what reduces the antioxidant defense mechanisms, what favors the installation of the renal oxidative stress, with the formation of species you reactivate of reactive oxygen species (ROS), substances these potentially harmful to the organism. The reduction of the glomerular filtration rate (GFR) in the evolution of CKD in dogs and cats is a component for the installation of the renal oxidative stress. The ROS possesses important action in the kidneys, and these substances are highly reactivate, and when presents in excess damage lipids, proteins, DNA and carbohydrate, driving functional and structural abnormalities taking the cellular apoptosis and necrosis. Against the harmful potential action of these substances you reactivate, she becomes fundamental a delicate control of his production and consumption in the half intracellular, in other words, a balance of his concentration intra and extracellular. That is possible due to the activity of the antioxidants. Like this, to present literature revision had as objective describes the participation of the oxidative stress in CRF, as well as the mechanisms defenses against the harmful action of those substances.