57 resultados para GFAAS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a simple, fast and sensitive method to determine selenium in samples of feces and of fish feed by graphite furnace atomic absorption spectrometry (GFAAS) through the direct introduction of slurries of the samples into the spectrometer's graphite tube. The limits of detection (LOD) and quantification (LOQ calculated for 20 readings of the blank of the standard slurries (0.50% m/v of feces or feed devoid of selenium) were 0.31 mu g 1(-1) and 1.03 mu g 1(-1), respectively, for the standard feces slurries and 0.35 mu g 1(-1) and 1.16 mu g 1(-1), respectively, for the standard feed slurries. The proposed method was applied in studies of bioavailability of selenium in different fish feeds and the results proved consistent with that obtained from samples mineralized by acid digestion using the microwave oven. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a simple, fast and sensitive method to determine chromic oxide (used as a biological marker of fish feed) in samples of fish feces by GFAAS through the direct introduction of slurries of the samples into the spectrometer's graphite tube. The standard samples of feces and of fish feed containing 0.10-1.00 mg kg(-1) of Cr2O3 were pre-frozen for I min in liquid nitrogen and then ground a cryogenic mill for 2 min, which reduced the samples' grain size to less than 60 mu m. The standard slurries were prepared by mixing 20 mg of standard samples of fish feed or feces with I mL of a solution containing 0.05% (v/v) of Triton X-100 and 0.50% (v/v) of suprapure HNO3 directly in the spectrometer's automatic sampling glass. The final concentrations of Cr2O3 present in the standard slurries were 2, 4, 8, 16 and 20 mu g L-1. After sonicating the mixture for 20s, 10 mu L of standard slurries were injected into the graphite tube, whose internal wall was lined with a metallic palladium film that acted as a permanent chemical modifier. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (2%, m/v of feces or feed devoid of minerals) were 0.81 and 2.70 mu g L-1 of Cr2O3 for the standard feces slurries, 0.84 and 2.83 mu g L-1 of Cr2O3 for the standard feed slurries. The proposed method was applied in studies of nutrient digestibility of different fish feeds and its results proved compatible with the results obtained from samples pre-mineralized by acid digestion. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a simple, fast, and sensitive method to determine zinc in samples of feces and fish feed by electrothermal atomic absorption spectrometry through the direct introduction of slurries of the samples into the spectrometer's graphite tube. The procedure is based on the injection of 10 mu L of an acidified aqueous solution containing 0.50% w/v of feces or feed and 0.50% v/v HNO(3) into graphite tube. The limits of detection and quantification calculated for 20 readings of the blank of the standard slurries (0.50% w/v of feces or feed devoid of zinc) were 0.04 and 0.13 mu g L(-1) for the standard feces slurries and 0.05 and 0.17 mu g L(-1) for the standard feed slurries. The proposed method was applied in studies of digestibility of zinc in different fish feeds, and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.
Resumo:
A method has been developed for the direct determination of As in sugar by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (end-capped THGA) and longitudinal Zeeman-effect background correction. The thermal behavior of As during the pyrolysis and atomization steps was investigated in sugar solutions containing 0.2% (v/v) HNO3 using Pd, Ni, and a mixture of Pd + Mg as the chemical modifiers. For a 60-muL sugar solution, an aliquot of 8% (m/v) in 0.2% (v/v)HNO3 was dispensed into a pre-heated graphite tube at 70 degreesC. Linear analytical curves were obtained in the 0.25 - 1.50-mug L-1 As range. Using 5 mug Pd and a first pyrolysis step at 600 degreesC assisted by air during 40 s, the formation of a large amount of carbonaceous residue inside the atomizer was avoided. The characteristic mass was calculated as 24 pg As and the lifetime of the graphite tube was around 280 firings. The limit of detection (L.O.D.) based on integrated absorbance was 0.08 mug L-1 (4.8 pg As) and the typical relative standard deviation (n = 12) was 7% for a sugar solution containing 0.5 mug L-1. Recoveries of As added to sugar samples varied from 86 to 98%. The accuracy was checked in the direct analysis of eight sugar samples. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained for acid-digested sugar samples by GFAAS.
Resumo:
A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)2 + Mg(NO3)2 as the chemical modifier. With 5 μg Pd + 3 μg Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400°C and 2100°C, respectively, and 20 μL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 -50.0 μg L-1 for As, Sb, Se; 10.0 - 100 μg L-1 for Cu; and 20.0 - 200 μg L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 μg L-1 As, 0.2 μg L-1 Cu, 0.6 μg L-1 Mn, 0.3 μg L-1 Sb, 0.9 μg L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 μg L-1, 1000 μg L-1, 2000 μg L-1, 5 μg L-1, and 50 μg L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mn, Sb, and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.
Resumo:
A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 μL of digested samples into the pretreated graphite platform with co-injection of 5 μL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 μg L -1 Cd and 0.7 μg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).
Resumo:
This paper presents a simple, fast and sensitive method to determine manganese in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) by the direct introduction of slurries into the graphite tube. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50 % m/v of feces or feed devoid of manganese) were 28 and 92 μg kg-1 for the standard feces slurries and 34 and 110 μg kg-1 for the standard feed slurries. The proposed method was applied in bioavailability studies of manganese in different fish feeds and their results proved compatible with those obtained for samples mineralized by acid digestion using microwave oven. ©2007 Sociedade Brasileira de Química.
Resumo:
In the present study, a simple, rapid and sensitive method was developed for the determination of mercury concentrations in the muscle tissue of fish from the Brazilian Amazon using graphite furnace atomic absorption spectrometry (GFAAS) following acid mineralization of the samples in an ultrasonic cold water bath. Using copper nitrate as a chemical modifier in solution and sodium tungstate as permanent modifier, we were able to attain thermal stabilization of the mercury up to the atomisation temperature of 1600 °C in the GFAAS assay. The calculated limits of detection (LOD) and quantification (LOQ) were 0.014 and 0.047 mg kg-1, respectively. © 2013 Elsevier Ltd. All rights reserved.