7 resultados para GENERALIZED 2ND LAW

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an extension of the original thought experiment proposed by Geroch, which sparked much of the actual debate and interest on black hole thermodynamics, and show that the generalized second law of thermodynamics is in compliance with it.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate and solve in the context of general relativity the apparent paradox which appears when bodies floating in a background fluid are set in relativistic motion. Suppose some macroscopic body, say, a submarine designed to lie just in equilibrium when it rests (totally) immersed in a certain background fluid. The puzzle arises when different observers are asked to describe what is expected to happen when the submarine is given some high velocity parallel to the direction of the fluid surface. on the one hand, according to observers at rest with the fluid, the submarine would contract and, thus, sink as a consequence of the density increase. on the other hand, mariners at rest with the submarine using an analogous reasoning for the fluid elements would reach the opposite conclusion. The general relativistic extension of the Archimedes law for moving bodies shows that the submarine sinks. As an extra bonus, this problem suggests a new gedankenexperiment for the generalized second law of thermodynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new techniques that allow the analysis and optimization of energy systems bearing in mind environmental issues is indispensable in a world with finite natural resources and growing demand of energy. Among the energy systems that deserve special attention, cogeneration in the sugar industry must be pointed out, because it uses efficiently a common fuel for generation of useful heat and power. Within this frame, thermoeconomical optimization - 2nd Law of Thermodynamics analysis by exergy function and economic evaluation of the thermal system - gradually is taking importance as a powerful tool to assist to the decision making process. Also, the explicit consideration of environmental issues offers a better way to explore trade-offs between different aspects to support the decisions that must be made. In this work it is used the technique of Life Cycle Analysis (LCA) which allows to consider environmental matters as an integral part of the problem, in opposite to most of the environmental approaches that only reduce residuals generation , without taking into account impacts associated to other related processes. On the other hand, the consideration of environmental issues in optimization of energy systems is a novel and promissory contribution in the state of the art of energy optimization and LCA. The system under study is a sugar plant of Tucumán (Argentina) given the particular importance that this industry had inside the regional economy of the Argentinean Northwest. Although cogeneration comes being used a while ago in sugar industry, being the main objective the generation of heat and as secondary objective the electric power generation and mechanic power to cover several needs of working machineries, to the date it is no available a versatile tool that allows to analyze economical feasible alternatives bearing in mind environmental issues. At sugar plants, steam is generated in boilers using as fuel bagasse - cellulosic fiber waste obtained crushing the sugar cane- and it is used to give useful heat and shaft work to the plant, but it can also be used to generate electricity with export opportunities to the electrical network. The great number of process alternatives outlines a serious decision making problem in order to take advantage of the resources. Although the problem turns out to be a mixed non-linear problem (MINLP), the main contribution of this work is the development of a hybrid strategy to evaluate cogeneration alternatives that combines optimization approaches with environmental indicators. This powerful tool for its versatility and robustness to analyze cogeneration systems, will be of great help in the decision making process, because of their easy implementation to analyze the kind of problems presented in the sugar industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24°C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at -5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.