55 resultados para GDH sum rule
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study of charmonium dissociation in heavy ion collisions is generally performed in the framework of effective Lagrangians with meson exchange. Some studies are also developed with the intention of calculate form factors and coupling constants related with charmed and light mesons. These quantifies are important in the evaluation of charmonium cross sections. In this Letter we present a calculation of the omega DD vertex that is a possible interaction vertex in some meson-exchange models spread in the literature. We used the standard method of QCD sum rules in order to obtain the vertex form factor as a function of the transferred momentum. Our results are compatible with the value of this vertex form factor (at zero momentum transfer) obtained in the vector-meson dominance model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We consider a [ud](2)(s) over bar current, in the finite-density QCD sum rule approach, to investigate the scalar and vector self-energies of the recently observed pentaquark state Theta(+)(1540), propagating in nuclear matter. We find that, opposite to what was obtained for the nucleon, the vector self-energy is negative, and the scalar self-energy is positive. There is a substantial cancellation between them resulting in an attractive net self-energy of the same order as in the nucleon case. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The long-standing discrepancy between the Gerasimov-Drell-Hearn sum rule and the analysis of pion photoproduction multipoles is greatly diminished by use of s-wave multipoles that are in accord with the predictions of chiral perturbation theory and describe the experimental data in the threshold region. The remaining difference may be due to contributions of channels with more pions and/or heavier mesons whose contributions to the sum rule remain to be investigated by a direct measurement of the photoabsorption cross sections.
Resumo:
We use QCD sum rules to study the possible existence of a Θc(3250) charmed pentaquark. We consider the contributions of condensates up to dimension 12 and work at leading order in αs. We obtain mΘc=(3.29±0.13) GeV, compatible with the mass of the structure seen by BABAR Collaboration in the decay channel B-→p̄Σc++π-π-. The proposed state is compatible with a previous proposed pentaquark state in the anticharmed sector. © 2013 American Physical Society.
Resumo:
In this work we calculate the form factors of the Lambda(c) and Lambda(b) semileptonic decay using the QCD sum rules approach. We found that the form factors sum rules are more stable than the respective mass sum rules, and we get a decay rate for Lambda(c) compatible with experiment.
Resumo:
QCD sum rules are used to calculate the contribution of the short-distance single-quark transition s-->d gamma to the amplitudes of the hyperon radiative decay Omega(-)-->Xi(-) gamma. We reevaluate the Wilson coefficient of the effective operator responsible for this transition. We obtain a branching ratio which is comparable to the unitarity limit.
Resumo:
The J/psipi --> (D) over barD*, D (D) over bar*, (D) over bar *D* and (D) over barD cross sections as a function of roots are evaluated in a QCD sum rule calculation. We study the Borel sum rule for the four point function involving pseudoscalar and vector meson currents, up to dimension four in the operator product expansion. We find that our results are smaller than the J/psipi --> charmed mesons cross sections obtained with models based on meson exchange, but are close to those obtained with quark exchange models. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.
Resumo:
Chiral loop corrections for hadronic properties are considered in a constituent quark model. It is emphasized that the correct implementation of such corrections requires a sum over intermediate hadronic states. The leading non-analytic corrections are very important for baryon magnetic moments and explain the failure of the sum rule (mu(Sigma+) + 2 mu(Sigma-))/mu(A) = -1 predicted by the constituent quark model. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A statistical model of linear-confined quarks is applied to obtain the flavor asymmetry of the nucleon sea. The model parametrization is fixed by the experimental available data, where a temperature parameter is used to fit the Gottfried sum rule violation. Results are presented for the ratios of light quark and antiquark distributions, d/u and (d) over bar/(u) over bar.
Resumo:
The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a, statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up (u) and down (d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.
Resumo:
Recent progress in the solution of Schwinger-Dyson equations, as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared finite. Such non-perturbative information can be introduced in the QCD perturbative expansion in the scheme named Dynamical Perturbation Theory. We exemplify this procedure with the calculation of some two-body non-leptonic annihilation B meson decays, which show agreement with the experimental data in the case of a gluon propagator characterized by a dynamical gluon mass of 500MeV, compatible with the value found in several processes computed with this method. We give a. preliminary account of the application of this procedure at the loop level in the case of the Bjorken sum rule.