13 resultados para GABAA receptor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1±3.9 vs. saline: 2.2±0.7)ml/210min, n=8) and water (17.7±1.9 vs. saline: 2.9±0.5ml/210min). Conversely, 0.3M NaCl (27.8±2.1ml/210min) and water (22.8±2.3ml/210min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation. © 2013 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. Besides increasing fluid depletion-induced sodium intake, the activation of GABA(A) receptors with muscimol into the LPBN also induces ingestion of 0.3 M NaCl in normonatremic, euhydrated rats. It has been suggested that inhibitory mechanisms activated by osmotic signals are blocked by GABAA receptor activation in the LPBN, thereby increasing hypertonic NaCl intake. Therefore, in the present study we investigated the effects of muscimol injected into the LPBN on water and 0.3 M NaCl intake in hyperosmotic cell-dehydrated rats (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In euhydrated rats, muscimol (0.5 nmol/0.2 mu l), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (24.6 +/- 7.9 vs. vehicle: 0.5 +/- 0.3 ml/180 min) and water (6.3 +/- 2.1 vs. vehicle: 0.5 +/- 0.3 ml/180 min). One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of muscimol into the LPBN also induced 0.3 M NaCl intake (22.1 +/- 5.2 vs. vehicle: 0.9 +/- 0.8 ml/210 min) and water intake (16.5 +/- 3.6 vs. vehicle: 7.8 +/- 1.8 ml/210 min). The GABAA antagonist bicuculline (0.4 nmol/0.2 mu l) into the LPBN reduced the effect of muscimol on 0.3 M NaCl intake (7.1 +/- 2.1 ml/210 min). Therefore, the activation of GABAA receptors in the LPBN induces ingestion of 0.3 M NaCl by hyperosmotic cell-dehydrated rats, suggesting that plasma levels of renin or osmolarity do not affect sodium intake after the blockade of LPBN inhibitory mechanisms with muscimol. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GABAergic activation in the lateral parabrachial nucleus (LPBN) induces sodium and water intake in satiated and normovolemic rats. In the present study we investigated the effects of GABA(A) receptor activation in the LPBN on 0.3 M NaCl, water, 2% sucrose and food intake in rats submitted to sodium depletion (treatment with the diuretic furosemide subcutaneously + sodium deficient food for 24 h), 24 h food deprivation or 24 h water deprivation. Male Holtzman rats with bilateral stainless steel cannulas implanted into the LPBN were used. In sodium depleted rats, muscimol (GABA(A) receptor agonist, 0.5 nmol/0.2 mu/l), bilaterally injected into the LPBN, produced an inconsistent increase of water intake and two opposite effects on 0.3 M NaCl intake: an early inhibition (4.3 +/- 2.7 versus saline: 14.4 +/- 1.0 ml/15 min) and a late facilitation (37.6 +/- 2.7 versus saline: 21.1 +/- 0.9 ml/180 min). The pretreatment of the LPBN with bicuculline (GABA(A) receptor antagonist, 1.6 nmol) abolished these effects of muscimol. Muscimol into the LPBN also reduced food deprivation-induced food intake in the first 30 min of test (1.7 +/- 0.6 g versus saline: 4.1 +/- 0.6 g), without changing water deprivation-induced water intake or 2% sucrose intake in sodium depleted rats. Therefore, although GABAA receptors in the LPBN are not tonically involved in the control of sodium depletion-induced sodium intake, GABAA receptor activation in the LPBN produces an early inhibition and a late facilitation of sodium depletion-induced sodium intake. GABAA activation in the LPBN also inhibits food intake, while it consistently increases only sodium intake and not water, food or sucrose intake. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nucleus of the solitary tract (NTS) is the site of the first synapse of cardiovascular afferent fibers in the central nervous system. Important mechanisms for cardiovascular regulation are also present in the caudal pressor area (CPA) localized at the caudal end of the ventrolateral medulla. In the present study we sought to investigate the role of the commissural subnucleus of the NTS (commNTS) on pressor and tachycardic responses induced by L-glutamate injected into the CPA. Male Holtzman rats (n=8 rats/group) anesthetized with urethane (1.2 g/kg of body weight, iv) received injections of the GABAA receptor agonist muscimol into the commNTS. Unilateral injection of L-glutamate (10 nmol/ 100 nL) into the CPA increased mean arterial pressure (MAP, 31 4 mm Hg, vs. saline: 3 +/- 2 mm Hg) and heart rate (HR, 44 8 bpm, vs. saline: 10 7 bpm). inhibition of commNTS neurons with muscimol (120 pmol/60 nL) abolished the increase in MAP (9 4 mm Hg) and HR (17 7 bpm) produced by L-glutamate into the CPA. The present results suggest that the pressor and tachycardic responses to CPA activation are dependent on commNTS mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Gamma-aminobutyric acid A (GABAA) receptor activation with muscimol in the lateral parabrachial nucleus (LPBN) induces water and 0.3 M NaCl intake. The purpose of this study was to investigate whether a local inflammatory event, such as periodontal disease (PD), is able to alter the effects of muscimol on water and 0.3 M NaCl intake in fluid-replete rats and in rats treated with furosemide (FURO) combined with captopril (CAP) injected subcutaneously. Design: Male Wistar rats were divided into two groups: with PD and those without PD (control condition). Fifteen days after PD, both groups had cannulas implanted bilaterally into the LPBN. Results: In fluid-replete rats without PD, injections of muscimol (0.5 nmol/0.2 μl) into the LPBN induced 0.3 M NaCl and water intake and a pressor response. In fluid-replete rats with PD, a decrease was observed in water intake and pressor response but not in 0.3 M NaCl intake. In control rats with FURO + CAP treatment, injections of muscimol into the LPBN increased 0.3 M NaCl and water intake. In PD rats with FURO + CAP treatment, a decrease was observed in 0.3 M NaCl and water intake after muscimol in the LPBN. Alveolar bone loss and interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) plasmatic concentration were higher in PD rats in comparison with controls. Conclusion: These results suggest that PD is able to reduce the pressor response and the dipsogenic and natriorexigenic effects induced by the activation of GABAA receptors in the LPBN, probably due to the elevation of the plasmatic concentration of pro-inflammatory cytokines IL-6 and TNF-α. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 mu l) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3 +/- 7.2 vs. saline: 2.6 +/- 0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 0) induced 0.3 M NaCl intake (12.1 +/- 6.5 and 32.5 +/- 7.3 ml/180 min, respectively, vs. saline: 0.4 +/- 0.2 ml/180 min) and water intake (5.2 +/- 2.0 and 7.6 +/- 2.8 ml/ 180 min, respectively, vs. saline: 0.8 +/- 0.4 ml/180 min), but no food intake (2 +/- 0.4 g/240 min vs. saline: 1 +/- 0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABAA antagonist bicuculline (1.6 nmol/0.2 mu l) abolished the effects of muscimol (0.5 nmol/0.2 mu l) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 mu l) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2 +/- 1.6 ml/240 min vs. saline: 1.1 +/- 0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14 +/- 4 mm Hg, vs. saline: -1 +/- 1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABAA receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.