17 resultados para G1 Phase
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development of strategies for the protection of oral tissues against the adverse effects of resin monomers is primarily based on the elucidation of underlying molecular mechanisms. The generation of reactive oxygen species beyond the capacity of a balanced redox regulation in cells is probably a cause of cell damage. This study was designed to investigate oxidative DNA damage, the activation of ATM, a reporter of DNA damage, and redox-sensitive signal transduction through mitogen-activated protein kinases (MAPKs) by the monomer triethylene glycol dimethacrylate (TEGDMA). TEGDMA concentrations as high as 3-5 mm decreased THP-1 cell viability after a 24 h and 48 h exposure, and levels of 8-oxoguanine (8-oxoG) increased about 3- to 5-fold. The cells were partially protected from toxicity in the presence of N-acetylcysteine (NAC). TEGDMA also induced a delay in the cell cycle. The number of THP-1 cells increased about 2-fold in G1 phase and 5-fold in G2 phase in cultures treated with 3-5 mm TEGDMA. ATM was activated in THP-1 cells by TEGDMA. Likewise, the amounts of phospho-p38 were increased about 3-fold by 3 mm TEGDMA compared to untreated controls after a 24 h and 48 h exposure period, and phospho-ERK1/2 was induced in a very similar way. The activation of both MAPKs was inhibited by NAC. Our findings suggest that the activation of various signal transduction pathways is related to oxidative stress caused by a resin monomer. Signaling through ATM indicates oxidative DNA damage and the activation of MAPK pathways indicates oxidative stress-induced regulation of cell survival and apoptosis. (C) 2008 Elsevier Ltd. All rights reserved.
Synthesis, characterization, and biological activity of a new palladium(II) complex with deoxyalliin
Resumo:
Synthesis, characterization, and biological activity of a new water-soluble Pd(II)-deoxyalliin (S-allyl-L-cysteine) complex are described in this article. Elemental and thermal analysis for the complex are consistent with the formula [Pd(C6H10NO2S)2]. 13C NMR, 1H NMR, and IR spectroscopy show coordination of the ligand to Pd(II) through S and N atoms in a square planar geometry. Final residue of the thermal treatment was identified as a mixture of PdO and metallic Pd. Antiproliferative assays using aqueous solutions of the complex against HeLa and TM5 tumor cells showed a pronounced activity of the complex even at low concentrations. After incubation for 24 h, the complex induced cytotoxic effect over HeLa cells when used at concentrations higher than 0.40 mmol/L. At lower concentrations, the complex was nontoxic, indicating its action is probably due to cell cycle arrest, rather than cell death. In agreement with these results, the flow cytometric analysis indicated that after incubation for 24 h at low concentrations of the complex cells are arrested in G0/G1. © 2005 NRC Canada.
Resumo:
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/ S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking. ©FUNPEC-RP.
Resumo:
Sickle Cell Disease (SCD) is one of the most prevalent hematological diseases in the world. Despite the immense progress in molecular knowledge about SCD in last years few therapeutical sources are currently available. Nowadays the treatment is performed mainly with drugs such as hydroxyurea or other fetal hemoglobin inducers and chelating agents. This review summarizes current knowledge about the treatment and the advancements in drug design in order to discover more effective and safe drugs. Patient monitoring methods in SCD are also discussed. © 2011 Bentham Science Publishers Ltd.
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma.Methods: Five clear cell renal cell carcinoma cell lines and carcinoma samples were used to analyze GPC3 mRNA expression (qRT-PCR). Then, representative cell lines, one primary renal carcinoma (786-O) and one metastatic renal carcinoma (ACHN), were chosen to carry out functional studies. We constructed a GPC3 expression vector and transfected the renal carcinoma cell lines, 786-O and ACHN. GPC3 overexpression was analyzed using qRT-PCR and immunocytochemistry. We evaluated cell proliferation using MTT and colony formation assays. Flow cytometry was used to evaluate apoptosis and perform cell cycle analyses.Results: We observed that GPC3 is downregulated in clear cell renal cell carcinoma samples and cell lines compared with normal renal samples. GPC3 mRNA expression and protein levels in 786-O and ACHN cell lines increased after transfection with the GPC3 expression construct, and the cell proliferation rate decreased in both cell lines following overexpression of GPC3. Further, apoptosis was not induced in the renal cell carcinoma cell lines overexpressing GPC3, and there was an increase in the cell population during the G1 phase in the cell cycle.Conclusion: We suggest that the GPC3 gene reduces the rate of cell proliferation through cell cycle arrest during the G1 phase in renal cell carcinoma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Foram examinados 100 bezerros da raça Nelore com 6 a 12 meses de idade, distribuídos em: grupo controle (G1; 50 bezerros sadios) e grupo fotossensibilização (G2; n= 50). As amostras de sangue foram coletadas 12 a 24 horas após o início da dermatite (M1) e 15 a 30 dias após (M2), época da cura das lesões cutâneas. O proteinograma sérico foi obtido por eletroforese em gel de acrilamida. em todos os bezerros foram identificadas 18 proteínas com pesos moleculares (PM) entre 16.000 a 189.000 dáltons (Da). em M1 e M2, as concentrações séricas das proteínas de PM 115.000Da (ceruloplasmina), 61.000Da (1-antitripsina), 45.000Da (haptoglobina) e 40.000Da (glicoproteína ácida) foram significativamente maiores em bezerros com fotossensibilização hepatógena em comparação com aquelas dos animais do grupo-controle. A determinação dos teores séricos de proteínas de fase aguda pode ser útil no monitoramento da progressão da fotossensibilização hepatógena em bovinos, inclusive orientando possíveis alterações em procedimentos terapêuticos.
Resumo:
Tuberculosis is still increasing and was declared a worldwide sanitary emergency by the World Health Organization (WHO) in 1995. Its control is difficult due to long treatment duration and lack of markers of treatment success or failure. Cytokines such as IFN-gamma and TNF-alpha, a central factor in immune response against Mycobacterium tuberculosis, are responsible for the interaction between T lymphocytes and the infected macrophage and are also produced during this interaction. As proinflammatory cytokines have a close relationship with mycobacteria clearance, in fact even preceding it, they could be used as markers for inflammatory activity and response to treatment. Proinflammatory cytokines act in the liver and stimulate a strong local and systemic acute-phase response as a result of homeostatic and physiological responses also induced by them. Acute-phase proteins produced by cytokine activity are useful diagnostic markers that could also be used to monitor treatment response as they can be serially quantified. The objective of this study was to evaluate IFN-gamma, TNF-alpha, IL-10 and TGF-beta production in supernatant of peripheral blood mononuclear cell (PBMC) and monocyte (MO) cultures, as well as serum acute-phase response through total protein, albumin, globulin, C-reactive protein (CRP), alpha-1-acid glycoprotein (AGP), and erythrocyte sedimentation rate (ESR) as regression markers of inflammatory response during pulmonary tuberculosis treatment. Twenty blood donors (G1) from the Blood Bank at Botucatu School of Medicine's University Hospital (BSM-UH) were evaluated once and 28 pulmonary tuberculosis patients (G2): 13 from BSM-UH and 15 from the Bauru State Health Secretariat. Patients were evaluated at three moments of treatment: before (M1), at three months (M2), and at the end (M3). Cytokines were determined in 20ml of peripheral blood (ELISA), with or without activation: lipopolysaccharide (LPS) for MO culture and phytohemagglutinin (PHA) for PBMC culture. Acute-phase protein behavior in G2 throughout treatment was: Globulins: M1> M2, M1> M3 (rho < 0.001); CRP: M1> M2> M3 (.< 0.001); AGP for men: M1> M2, M1> M3 (rho < 0.001); ESR for men: M1> M2, M1> M3 (rho < 0.0016) and for women: M1> M2 (.< 0.025). Comparison between cytokine levels found in supernatant of MO and PBMC cultures, with and without stimulus, in G1 and G2 during treatment showed: TNF-alpha (with/ without LPS) at M1: G2> G1; at M2: G2> G1 (rho < 0.001); (without LPS) at M3: G2> G1 (rho < 0.001), (with LPS) at M3: G2> G1 (rho < 0.028); IFN-. (with and without PHA) at M1: G2> G1; at M2: G2> G1 (rho < 0.001); IL-10 (with and without LPS) at M1: G2> G1; at M2: G2> G1; at M3: G2> G1 (rho < 0.001); TGF-beta (with and without LPS) at M1: G2> G1; at M2: G2> G1 (rho < 0.001), (without LPS) at M3: G2> G1 (rho < 0.001). In G2, all cytokines in supernatant of MO and PBMC cultures, with and without stimulus, showed: M1> M2> M3 (rho < 0.01). Levels of globulins, CRP, AGP, and ESR in patients with pulmonary tuberculosis before treatment (M1) were significantly higher than reference values, suggesting their use as diagnostic markers and indicators of treatment. The CRP decreasing values along treatment could be taken as a marker of the regression of inflammatory process and of response to treatment in patients with pulmonary tuberculosis.Regarding cytokines, there was significant increase in TNF-alpha, IFN-gamma, IL-10, and TGF-alpha levels before and at three months treatment, with and without stimulus; in TNF-a and IL-10 lvels, with and without stimulus, as well as in TGF-alpha levels without stimulus at six months. Patients had higher levels of all studied cytokines than controls before treatment, and these values decreased along treatment. In this study, pulmonary tuberculosis patients showed a Th0 cytokine profile before treatment, with the production of both Th1 (IFN-gamma) and Th2 (IL-10) cytokines, in addition to TNF-alpha inflammatory and TGF-alpha regulatory and fibrosis-inducer cytokines. At the end of treatment, all had evolved to Th2 profile, probably in an attempt to reduce the harmful effects of the proinflammatory activity of the Th1 cytokine profile and of the still above-normal levels of TNF-alpha. The high levels of TGF-alpha, also found in these patients, are related to its important role in the extracellular matrix deposition and fibrosis induction that characterize tuberculosis healing process. IFN-gamma was the only cytokine reaching normal levels at the end of treatment, which suggests its use as a marker of response to treatment.