2 resultados para Future Technology
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion-resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 °C using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y 2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y 2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining. © (2010) Trans Tech Publications.
Resumo:
Selecting a suitable place to install a new landfill is a hard work. Bauru is a Brazilian municipality where the local landfill currently in use has a life span that is almost over, and the selection of a new area for a future landfill is crucial and urgent. Here we use a geographic information system (GIS) approach to indicate possible suitable areas for installing the landfill. The considered criteria were: river network and the respective buffer zone, relief, urban areas and their respective buffer zone, existence of Areas for Environmental Protection (AEPs), occurrence of wells and their respective buffer zones, existence of airports and their buffer zones, wind direction, and the road network and its respective buffer zone. Due the facts that (1) Bauru has an urban area relatively large in relation to whole municipal area, (2) Bauru has two airports, and (3) this area encompasses parts of three AEPs, the model showed that there are few areas suitable and moderately suitable in Bauru, and the greater part of the municipality is unsuitable to install a new landfill. Due to this important finding reported here, the local policymakers should consider the suitable or even moderately suitable areas for analysis in situ or look for other creative solutions for destination of the solid waste. We highly encourage the use of GIS in studies that seek suitable areas for future landfills, having found that SIG was a tool that allowed fast and precise work and generated an outcome sufficiently clear of interpretation.Implications: Solid waste (SW) management is one of the main environmental concerns nowadays. Landfilling SW is still the main practice to disposal of such material. However, for many regions, suitable places for landfilling are getting scarce. This study proved this situation for a populous place in a southeastern Brazilian region. This study also showed how the decision makers should manage the problem in order to minimize the amount of SW generated and delivered for the landfill. Massive investment in education is a critical issue to reach the proposed aim.