6 resultados para Functionally graded materials
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.
Resumo:
Syntactic Functionally Graded Metal Matrix Composites (SFGMMC) are a type of composites reinforced by microballoons exhibiting a graded reinforcement distribution. These materials constitute a promising new generation of lightweight structural materials for aerospace, marine and shielding/insulation applications. In this work, A356 alloy reinforced with silica-alumina microballoons (SiO2-Al2O3) was processed by casting techniques. The influence of the microballoon distribution gradient on the corrosion behaviour of the composite was investigated by potentiodynamic polarisation and Electrochemical Impedance Spectroscopy (EIS). Composite surfaces were analysed before and after testing by Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) to determine the influence of microstructural changes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Research on the micro-structural characterization of metal-matrix composites uses X-ray computed tomography to collect information about the interior features of the samples, in order to elucidate their exhibited properties. The tomographic raw data needs several steps of computational processing in order to eliminate noise and interference. Our experience with a program (Tritom) that handles these questions has shown that in some cases the processing steps take a very long time and that it is not easy for a Materials Science specialist to interact with Tritom in order to define the most adequate parameter values and the proper sequence of the available processing steps. For easing the use of Tritom, a system was built which addresses the aspects described before and that is based on the OpenDX visualization system. OpenDX visualization facilities constitute a great benefit to Tritom. The visual programming environment of OpenDX allows an easy definition of a sequence of processing steps thus fulfilling the requirement of an easy use by non-specialists on Computer Science. Also the possibility of incorporating external modules in a visual OpenDX program allows the researchers to tackle the aspect of reducing the long execution time of some processing steps. The longer processing steps of Tritom have been parallelized in two different types of hardware architectures (message-passing and shared-memory); the corresponding parallel programs can be easily incorporated in a sequence of processing steps defined in an OpenDX program. The benefits of our system are illustrated through an example where the tool is applied in the study of the sensitivity to crushing – and the implications thereof – of the reinforcements used in a functionally graded syntactic metallic foam.
Resumo:
This study evaluated periapical tissue healing and orthodontic root resorption of endodontically treated teeth sealed with calcium hydroxide in dogs. The sample consisted of three contralateral pairs of maxillary incisors and two contralateral pairs of mandibular incisors in each of two dogs using a split mouth design. After biomechanical preparation of the teeth in the first group (n = 10), a Ca(OH)(2) dressing was placed for 14 days before root canal filling with Ca(OH)(2)-based sealer (Sealapex) and gutta-percha points. In the second group (n = 10), root canals were obturated immediately after the mechanical preparation with gutta-percha points and zinc oxide and eugenol (ZOE)-based sealer (Endofill). After completion of endodontic treatment, the teeth were moved with an orthodontic appliance with a calibrated force of 200 g, reactivated every 21 days. After 105 days, the animals were killed and the teeth were removed upon completion of active treatment, without a period of recovery, and prepared for histomorphological analysis. All sections of each tooth were graded subjectively on a scale from one to four to obtain the average of the 16 histomorphological parameters analysed. Evaluation of the differences between the two treatment protocols was made with Mann-Whitney U-test. It was observed that the teeth treated with Ca(OH)(2)-based materials provided better outcomes (P = 5%), with complete repair of all root resorption areas, high rate of biological closure of the main canal and apical accessory canals by newly formed cementum, less intense and extensive chronic inflammatory infiltrate, and better organization of the periodontal ligament. Under the tested conditions, Ca(OH)(2)-based materials had a favourable action on periapical tissue healing and repair of orthodontic root resorption in endodontically treated dogs' teeth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)