3 resultados para Functionalization process

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Regenerative therapies using biomaterials require accurate information on interactions between the implanted material and the human body. To improve the process of bone regeneration it is necessary to obtain a better understanding of the influence of the surfaces on the early stages of osseointegration. This work aims to investigate the dynamic interaction between simulated body fluid (SBF) and titanium surfaces (Ti cp) immediately after their first contact. METHODS: Ti cp samples were passed through physicochemical treatments after immersion in acid solution, alkaline solution and solutions containing TiO2 and Ca2+, to obtain three different surfaces. These were characterized by electron microscopy and free energy estimates. The evaluation of the interaction with SBF was performed by measuring the dynamic contact angles after contacting the surfaces. RESULTS: The effects of SBF wettability were more significant on surfaces according to high energy estimates. A comparative analysis of the three types of surfaces showed that fluid spreading was greater in samples with greater polar components, indicating that the surface nature influences interactions in the early stages of osseointegration. CONCLUSION: The results indicate the influence of polar interactions in the dynamic wettability of the SBF. It is possible that these interactions can also influence cellular viability on surfaces. Based on these results, new experiments are being designed to improve the presented methodology as a tool for the evaluation of biomaterials without the need for in vivo experiments.