120 resultados para Free electron laser

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electro-optical properties of sol-gel derived 2 mol% antimony or niobium doped tin dioxide films have been measured. The electron density has been calculated considering all the relevant scattering mechanisms and experimental conductivity data measured in the range -197 to 25 degrees C. The results support the hypothesis that both ionised impurity scattering and grain boundary scattering have comparable effects in the resistivity of coatings, for free electron density congruent to 5 x 10(18) cm(-3). We have measured variation of photoconductivity excitation with wavelength using xenon and deuterium lamp as light sources. Results show that the main band in the photoconductivity spectrum is dependent on the spectral light source emission, the excitation peak reaching 5 eV (deuterium lamp). This band is due to the recombination process involving oxygen species and photogenerated electron-hole pairs. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evaluation of free carrier concentration based on Drude's theory can be performed by the use of optical transmittance in the range 800-2000 nm (near infrared) for Sb-doped SnO2 thin films. In this article, we estimate the free carrier concentration for these films, which are deposited via sol-gel dip-coating. At approximately 900 mn, there is a separation among transmittance curves of doped and undoped samples. The plasma resonance phenomena approach leads to free carrier concentration of about 5 x 1020 cm(-3). The increase in the Sb concentration increases the film conductivity; however, the magnitude of measured resistivity is still very high. The only way to combine such a high free carrier concentration with a rather low conductivity is to have a very low mobility. It becomes possible when the crystallite dimensions are taken into account. We obtain grains with 5 nm of average size by estimating the grain size from X-ray diffraction data, and by using line broadening in the diffraction pattern. The low conductivity is due to very intense scattering at the grain boundary, which is created by the presence of a large amount of nanoscopic crystallites. Such a result is in accordance with X-ray photoemission spectroscopy data that pointed to Sb incorporation proportional to the free electron concentration, evaluated according to Drude's model. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Living organisms are constantly subjected to the action of free radicals, which are one of the causes of oxidation reactions, because they have on free electron, what makes it very reactive. They are products of organism reactions or they are produced by exogenous factors, such as tobacco. Fatty acids are the most vulnerable target, and may suffer lipid peroxidation, what affects the cell structure. Cardiovascular diseases, cancer and diseases of aging are occurrence of these reactions in the organism related. The aliments are also subjected to suffer oxidation reactions, what make them unfit for consumption and decreasing the useful life. Synthetics antioxidants are used as aliments preservatives, but they present some toxicity for the organism. Studies for the utilization of natural antioxidants have gained more importance in recent decades, due to the conservation potential and low toxicity. Phenolics compounds are largely present at the vegetable kingdom and they present high antioxidant potential due to the neutralization and kidnapping of free radicals capacity. These compounds are used by the industry at the aliments conservation, specially the phenolics acids. The consumption of aliments rich in phenolic compounds, such as teas, wines and fruits are low incidence of degenerative diseases related. This study consists in a bibliographic revision that covers these compounds importance in diet and at the food conservation, and the methodologies and difficulties in the extraction process due to variety of molecules of this group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: the Nd:YAG laser irradiation of dental enamel was evaluated in enamel demineralization experiments in a Streptococcus mutans culture media. Summary Background Data: Previous studies had shown that a continuous wave Nd:YAG laser at an energy of approximately 67 mJ may induce an increased acid resistance in human dental enamel when exposed to severe demineralization conditions. Methods: Enamel windows of 3 x 4 cm in the buccal surface were irradiated with a continuous wave Nd:YAG laser at a wavelength of 1,064 Ecm using energy densities of from 83.75 to 187.50 J/cm(2), Enamel windows of 3 x 4 cm on the lingual surface served as control (without the laser irradiation). The enamel windows were then exposed to a Streptococcus mutans culture media at a temperature of 37 degrees C for 15 and 21 days. The laser effects and demineralization were examined both by optical microscopy and scanning electron microscopy (SEM), Results: A comparison between the lased and the unlased windows of enamel showed fusion and recrystalization of the enamel and increased acid-resistance in all groups irradiated with the Nd:YAG laser, on the other hand, the 3 x 4 delimited enamel surfaces from the control group (not irradiated with the Nd:YAG laser) showed 100% deminerization, Conclusions: These findings are consistent with the finding that laser irradiation of dental results in significant reduction of the effective solubility of enamel mineral.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the study was to determine the reproducibility and validity of DIAGNOdent in detecting active and arrested caries lesions on free smooth surfaces. Volunteers were selected from state schools of Piracicaba, São Paulo, Brazil. Overall, 220 lesions were clinically examined. Two specially trained ('calibrated') examiners performed both clinical and laser evaluations independently, and after a 1-week interval, the examinations were repeated, the intra-examiner agreement for the laser evaluation was substantial (kappa(ex1) = 0.79, kappa(ex2) = 0.71). There was almost perfect agreement between the two examiners for the clinical examination (kappa(ex1) = 0.95, kappa(ex2) = 0.85). The inter-examiner agreement showed substantial reproducibility (kappa = 0.77) for the laser examination and almost perfect agreement (kappa = 0.85) for the clinical evaluation. The validation criterion was the clinical examination of white spots, recorded as active or arrested. The sensitivity was 0.72 and the specificity was 0.73, which indicates that the DIAGNOdent was a good auxiliary method for detecting incipient caries lesions on free smooth surfaces. The utilization of both methods can improve the efficacy of caries diagnosis. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: In vitro analysis of caries resistance of dental enamel under caries simulation after irradiation with Er:YAG laser. Background Data: More susceptible to caries development spots at adjacent hard tissues from cavity preparations of dental tissues using burrs or lasers are quite common. Methods: Thirteen caries-free third permanent human molars were distributed as follows: G1: sound control and caries control; G2: Er:YAG 100, 200, 300, or 400 mJ/ 10 Hz/ 3 sec.; G3: the same parameters of G2 followed by artificial caries simulation, through dynamic model of demineralization and remineralization (DE/RE). Caries resistance analysis was evaluated through scanning electron microscopy (SEM) and Ca/P rate (X-Rays spectroscopy - EDX). Results: Photomicrographs showed that the Er:YAG laser created craters with rough aspect which became more evident as the energy per pulse was increased, but without change of regular morphology of enamel prisms. Significant statistical changes among the irradiated and control groups was observed considering the Ca/P ratio. Conclusion: Irradiated groups showed higher caries resistance than control groups. However, it is not possible to affirm that the enamel surface accidental irradiation could be a benefit to caries resistance for other situations can be considered, as biofilm deposit, which could increase the caries susceptibility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: the purpose of this study was to evaluate, by scanning electron microscopy (SEM), the effects of Nd:YAG laser irradiation applied perpendicular or parallel to the root canal dentin wall. Methods: Thirty human teeth were divided into two groups: Group A (20 roots), laser application with circular movements, parallel to the dentin root surface; and Group B (10 roots), roots cut longitudinally and laser applied perpendicular to the root surface. Group A was subdivided into A1 (10 roots), laser application with 100 mJ, 15 Hz and 1.5 W; and A2 (10 roots) with 160 mJ, 15 Hz, and 2.4 W. Group B was subdivided into B1 (10 hemisections) and B2 (10 hemi-sections) with parameters similar to A I and A2. Four applications of 7-sec duration were performed, with a total exposure of 28 sec. SEM evaluations were made in the cervical, middle, and apical thirds, with 500X and 2000X magnifications. Morphological changes scores were attributed, and the results were submitted to Kruskal Wallis statistical test (5%). Results: Significant statistical differences were found between groups A and B (p = 0.001). In groups A1 and A2, few areas of dentin melting were observed. In groups B1 and B2, areas of melting dentin covering dentin surface were observed. Conclusions: It was concluded that intracanal laser application with circular movements (parallel to the surface) produces limited morphological changes in root canal dentin wall.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The free mycolic acid fraction from Rhodococcus lentifragmentus was derivatized to methyl esters and further fractionated into saturated (F-0), monounsaturated (F-1) and diunsaturated (F-2) species using argentation-TLC. Methyl esters fractions F-0, F-1 and F-2, accounting for approximately 7.4%, 53.1% and 39.5%, respectively, were analyzed by electron impact (EI) and chemical ionization (CI) mass spectrometries. According to EI-MS, peaks observed for M(+)-18, that were prominent compared to those representing M(+)-32 and M(+)-(18 + 32), indicated that the carbon chain size ranged from C-36 to C-48. The pyrolytic cleavage of methyl mycolates (R(2)-CHOH-CH(R(1))-COOCH3), following the McLafferty rearrangement released fragment ions corresponding to, (a) the alpha-subunit, representing the fatty acid methyl ester (R(1)-CH2-COOCH3), methyl hexadecanoate, methyl tetradecanoate and methyl dodecanoate in decreasing order of relative intensity of peaks, and (b) the beta-subunit, representing the meroaldehyde moiety (R(2)-CHO). The saturated meroaldehyde species exhibited peaks representing meroaldehyde minus 18 mass units in which R(2) ranged from C19H39 to C31H63. The monunsaturated species exhibited peaks representing the meroaldehyde in which R(2) ranged from C19H37 to C31H61; peaks corresponding to meroaldehyde minus 18 mass units appeared only in the most abundant components, C29H57CHO, C27H53CHO, C25H49CHO and C31H61CHO, in a decreasing order of relative abundance. The diunsaturated species exhibited peaks essentially corresponding to meroaldehyde in which R(2) corresponded to C31H59 and C29H55; the latter displayed a relative intensity that was about one-half compared to that of the former. Fractions F-0, F-1 and F-2 showed a more intense pyrolytic fragmentation under CI-MS in contrast to results found under EI-MS. Therefore, peaks representing the alpha-subunit and the beta-subunit were more prominent than the ones representing the fragmentation of the hydrocarbon chain. Moreover, the beta-subunit of saturated species exhibited peaks corresponding to meroaldehyde plus hydrogen, and no dehydration of the beta-subunit occurred in this case. In turn, the beta-subunit of monounsaturated and diunsaturated species showed peaks representing both the meroaldehyde plus hydrogen and its dehydration product plus hydrogen. Thus, the presence of unsaturation in the meroaldehyde subunit of methyl mycolate facilitates appearance of dehydration fragment ions under chemical ionization procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the first time, ab inito all electron fully relativistic and correlated Dirac-Fock calculations with prolapse free basis set are reported for a Super Heavy Element. We investigated the relativistic effects on bonding and on some spectroscopic constants for the darmstadtium carbide and our results at DF/CCSD(T) with a prolapse free basis set suggest for R-e, omega(e) and D-e the values of 174 pm, 1114 cm(-1) and 7.29 eV, respectively. These values are very similar to the values for PtC found on literature. It was also found that prolapse free basis set may be important to estimate the dissociation energy using Relativistic 4-components correlated methods. (c) 2007 ELsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron irradiation of solids produces a backemission of secondary electrons (energies between 0 and 50 eV) and reflected primaries (energies between 50 eV and that of the incident beam). For insulators, it is shown that an externally applied positive electric field penetrating into the solid material, energizes electrons generated by the primary irradiation and enables them to travel back to the surface of incidence and be emitted (stimulated secondary emission).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.