106 resultados para Formation and seed viability
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Pechini method as well as the simultaneous addition of seeds particles and dopant solutions of BaTiO3 (BT) and PbTiO3 (PT) were used to prepare the perovskite phase 0.88 PZN-0.07 BT-0.05 PT. To study the influence of seed particle frequency on the synthesis of the PZN ceramic, two ranges of seed particle size were used: the range from 30 to 100 nm, termed small seed particles (frequency of 10(15) particles/cm(3)); and the range from 100 to 900 nm, termed large seed particles (frequency of 10(13) particles/cm(3)). The crystalline nuclei size influenced the calcining process, the sintering process and the microstructure. Samples prepared with lower seed frequency displayed more amount of pyroclore phase, need higher temperatures for sintering and showed a more heterogeneous microstructure with poor dielectric properties. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Magnolia ovata seeds have been reported as desiccation sensitive. In order to test if the drying rate would affect the assessment of storage behaviour of these seeds, the effect of different drying rates and storage times on the viability was tested. Seeds were dried over activated silica gel (fast drying) or salt solutions for different periods (slow drying) and stored at -20°C. Partial drying transiently increased the final germination and the germination speed index, but further drying resulted in reduction of these parameters. Drying rate affected the final germination and vigour. Seeds that were slow-dried to 0.10 g H 2O ̇ g -1 dw retained high viability when compared with seeds desiccated to the same water content level by the fast drying method, although their vigour was reduced. Only slow-dried seeds could be stored at -20°C for 90 d without reduction of viability. These data suggested that the storage behaviour of seeds of M. ovata seeds should be classified as intermediate.
Resumo:
The developmental anatomy and morphology of the ovule and seed in several species of Heliconia were investigated as part of an embryological study of the Heliconiaceae and to provide a better understanding of their relationships with the other families of the Zingiberales. Heliconia species have an ovule primordium with an outer integument of both dermal and subdermal origin. The archesporial cell is divided into a megasporocyte and a single parietal cell, which in turn are divided only anticlinally to form a single parietal layer, disintegrating later during gametogenesis. The embryo sac was fully developed prior to anthesis. In the developing seed, the endosperm was nuclear, with wall formation in the globular stage; a nucellar pad was observed during embryo development, but later became compressed. The ripe fruit contained seeds enveloped by a lignified endocarp that formed the pyrenes, with each pyrene having an operculum at the basal end; the embryo was considered to be differentiated. Most of these characteristics are shared with other Zingiberales, although the derivation of the operculum from the funicle and the formation of the main mechanical layer by the endocarp are unique to the Heliconiaceae.
Resumo:
The embryology and the seed development of Syngonanthus caulescens are presented. This species possesses: a bithecous and tetrasporangiate anther, with a four-layered wall, a conspicuous endothecium of the baseplate type, a secretory tapetum formed by uninucleate cells, successive microsporogenesis resulting in isobilateral microspore tetrads, spiraperturate and binucleate pollen grains, an orthotropous, pendulous, bitegmic and terminucellate ovule, with a micropyle formed only by the inner integument, a megagametophyte of the Polygonum type, with formation of an antipodal cyst, free-nuclear and starchy endosperm, a broad and bell-shaped embryo, operculate and endotestal seeds, a seed coat derived from the inner layers of both integuments, and tanniniferous endotegmen. These embryological aspects are characteristic not only for Syngonanthus, but for the whole family, with few differences between genera. Furthermore, the pollen grain of the spiraperturate type and the cystic arrangement of the antipodals in the megagametophyte are peculiar and very distinctive features of Eriocaulaceae within the other Poales (commelinids). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tropical rain forest conservation requires a good understanding of plant-animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i. e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Caesalpinia echinata and C ferrea var. ferrea have different seed behaviours and seed and fruit types. Comparison of the seed ontogeny and anatomy partly explained the differences in seed behaviour between these two species of Brazilian legumes; some differences were also related to fruit development. The seed coat in C. ferrea consisted of two layers of osteosclereids, as well as macrosclereids and fibres, to form a typical legume seed coat, whereas C. echinata had only macrosclereids and fibres. In C. echinata, the developing seed coat had paracytic stomata, a feature rarely found in legume seeds. These seed coat features may account for the low longevity of C. echinata seeds. The embryogeny was similar in both species, with no differences in the relationship between embryo growth and seed growth. The seeds of both species behaved as typical endospermic seeds, despite their different morphological classification (exendospermic orthodox seeds were described for C. echinata and endospermic orthodox seeds for C. ferrea). Embryo growth in C. ferrea accelerated when the sclerenchyma of the pericarp was developing, whereas embryonic growth in C. echinata was associated with the conclusion of spine and secretory reservoir development in the pericarp. Other features observed included an endothelial layer that secreted mucilage in both species, a nucellar summit, which grew up into the micropyle, and a placental obturator that connected the ovarian tissue to the ovule in C. ferrea. (C) 2004 the Linnean Society of London.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
With seeds collected monthly during one year from 53 1-m(2) seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal- (zoochorous) and wind-dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.
Resumo:
Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m(2) seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite Such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle. (C) 2008 Elsevier B,V. All rights reserved.
Resumo:
The embryology and seed structure of Blastocaulon scirpeum (Mart.) Giul. and Paepalanthus scleranthus Ruhland were studied in order to contribute to the embryology of Eriocaulaceae and supply data for future taxonomic studies. Both species present: anther with 4-layered wall; conspicuous endothecium with fibrous thickenings; secretory tapetum with uninucleate cells; successive microsporogenesis forming isobilateral microspore tetrads; bicellular pollen grains; orthotropous, bitegmic and tenuinucellate ovule; micropyle formed by the inner integument alone; megagametophyte of the Polygonum type, with a conspicuous antipodal cyst; nuclear and starchy endosperm; reduced, undifferentiated, and bell-shaped embryo; operculate and endotestal seed; seed coat derived from the two ovule integuments; and tanniniferous endotegmen. In addition, Blastocaulon scirpeum shows a bisporangiate anther and a 3-layered ovary wall, while P. scleranthus presents a tetrasporangiate anther that becomes bisporangiate at maturity, and a 2-layered ovary wall. This investigation shows that the bisporangiate condition does not suffice to separate Blastocaulon from Paepalanthus, since it is common to both. It also indicates, based on several embryological aspects, the proximity of Eriocaulaceae and Xyridaceae, which comply mainly with the features presented by the other commelinid families. These results may be used in future cladistic analysis of the family, and contribute to a better understanding of its phylogeny.