10 resultados para Food pathogens
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work was to assess the microbiological quality of commercialized desserts, sandwiches and finger food in Botucatu, SP, for human consumption. A total of 172 food samples were analyzed for fecal coliforms and coagulase-positive Staphylococcus and 69 (40.1%) were in disagreement with the standards established by Decree No. 12 (Brazilian Food Sanitation Standard, 2001). Coagulase-positive Staplylococcus was isolated from 26 (15.1%) samples. Toxins were not isolated directly from foods but 27 (54%) coagulase-positive Staphylococcus strains were enterotoxigenic, and toxin type C was the most frequently detected. These results suggest that these products may act as an important vehicle of transmission for well-established pathogens. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A novel material for electrochemical biosensing based on rigid conducting gold nanocomposite (nano-AuGEC) is presented. Islands of chemisorbing material (gold nanoparticles) surrounded by nonreactive, rigid, and conducting graphite epoxy composite are thus achieved to avoid the stringent control of surface coverage parameters required during immobilization of thiolated oligos in continuous gold surfaces. The spatial resolution of the immobilized thiolated DNA was easily controlled by merely varying the percentage of gold nanoparticles in the composition of the composite. As low as 9 fmol (60 pM) of synthetic DNA were detected in hybridization experiments when using a thiolated probe. Moreover, for the first time a double tagging PCR strategy was performed with a thiolated primer for the detection of Salmonella sp., one of the most important foodborne pathogens affecting food safety. Ibis assay was performed by double-labeling the amplicon during the PCR with a -DIG and -SH set of labeled primers. The thiolated end allows the immobilization of the amplicon on the nano-AuGEC electrode, while digoxigenin allows the electrochemical detection with the antiDIG-HRP reporter in the femtomole range. Rigid conducting gold nanocomposite represents a good material for the improved and oriented immobilization of biomolecules with excellent transducing properties for the construction of a wide range of electrochemical biosensors such as immunosensors, genosensors, and enzymosensors.
Resumo:
Purpose: This paper aims to evaluate in vitro antibacterial activity of oregano essential oil against foodborne pathogens as a starting point for the use of spice as a natural preservative in food. Design/methodology/approach: Disc and well-diffusion assays were performed to investigate antibacterial activity of oregano essential oil against six bacteria strains: Bacillus cereus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella Typhimurium. Three concentrations of oregano essential oil were employed: 1.0 percent, 2.0 percent and 5.0 percent. Bacterial growth inhibition was determinate as the diameter of the inhibition zones. Findings: Oregano essential oil showed antibacterial activity against spoilage microorganisms, at different concentrations, except for P. aeruginosa. There was a significant difference between methodologies only for the microorganism S. aureus. The results provided evidence of the existence of significant differences among the concentrations of oregano essential oil for each microorganism evaluated. Research limitations/implications: Although the research for this paper involved only oregano essential oil, it provided a starting-point for further investigations concerning spices as natural preservatives for food systems. Practical implications: Disc and well-assays were found to be simple and reproducible practical methods. Other spices, their essential oil and extracts might be researched against other micro-organisms. Furthermore, in situ studies need to be performed to evaluate possible interactions between essential oils and compounds naturally present in food against microbial strains. Social implications: The imminent adoption of measures to reduce the use of additives in foods and the reduction on using such compounds. Originality/value: This study provides insights that suggest a promising exploratory development of food natural preservative against spoilage microorganisms in food systems by the use of oregano essential oil. © Emerald Group Publishing Limited.
Resumo:
The establishment of a peanut crop may be unsatisfactory due to poor seed performance in the field and among the factors attributed to this are a reduction in seed vigor during storage and the presence of pathogens. The objective of this study was to evaluate the efficiency of treating peanut seeds with fungicides and the effect on physiological performance and disease control during storage. In a completely random experimental design, two seed batches of the Runner IAC 886 peanut cultivar were submitted to five fungicide treatments (1 control - untreated; 2 thiram; 3 carbendazim + thiram; 4 fludioxonil + metalaxyl-m; 5 fludioxonil + mefenoxam + thiabendazole) and evaluated after zero, 30 and 60 days of storage. The seeds were stored untreated but treated before the evaluation of physiological performance from germination, vigor (first germination count and accelerated aging), field seedling emergence and seed sanitation tests. The results showed differences in batch performance potential during storage, with batch 1 being superior. The sanitation test showed that all the chemical seed treatments controlled pathogens efficiently (Aspergillus spp. and Penicillium sp.), but only thiram did not affect peanut seed performance in the laboratory evaluations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)