219 resultados para Fluoroindate glasses (FIG)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd 3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/ Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb 3+ ions. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.
Resumo:
Infrared-to-visible upconversion emission enhancement through thermal effects in Yb3+-sensitized Pr3+-doped fluoroindate glasses excited at 1.064 mu m is investigated. A twentyfold increase in the 485 nm blue emission intensity as the sample temperature was varied from 20 to 260 degrees C was observed. The visible upconversion fluorescence enhancement is ascribed to the temperature dependent multiphonon-assisted anti-Stokes excitation of the ytterbium sensitizer and excited-state absorption of the praseodymium acceptor. A model based upon conventional rate equations considering a temperature dependent effective absorption cross section for the F-2(7/2)-->F-2(5/2) transition of the Yb3+ and (1)G(4)-->P-3(0) excited-state absorption of the Pr3+, agrees very well with the experimental results. (C) 2000 American Institute of Physics. [S0021-8979(00)08209-8].
Resumo:
Luminescence data for Eu3+ and Gd3+ in fluoroindate glasses are compared to those of a fluorozirconate glass. Emission is observed from Eu3+ 5D(J) (J = 0, 1, 2 and 3) and Gd3+ P-6(7/2) excited-state levels and the results put in evidence Eu-Eu and Gd-Eu energy transfer processes. Vibronic bands related to a 320 cm-1 vibrational mode could be observed for Eu3+ luminescent transitions with DELTAJ = 0, 1 and 2 and also for the P-6(7/2) --> S-8(7/2) transition of Gd3+. Lanthanide ion site symmetry is closer to an inversion center in fluoroindate glasses than it is in fluorozirconate.
Resumo:
SnO2 coatings were deposited by a sol-gel dip-coating process to shield fluoroindate glasses (40In-F-3:16BaF(2):20SrF(2):20ZnF(2):2NaF:2GaF(3)) against corrosion in aqueous environments. The effect of the number of coating applications and of the withdrawal speed on the thickness, density and roughness of tin oxide films was investigated by X-ray reflectivity. Film thickness increases both with the number of coating applications and the withdrawal speed. The aqueous leaching of uncoated and SnO2-coated fluoroindate glasses was studied by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), showing that the glass surface was protected against hydrolytic attack. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work an analysis of the phenomenological Omega(lambda) intensity parameters for the Tm3+ ion in fluoroindate glass is made using the standard Judd-Ofelt theory, and a modified oscillator strength taking into account odd-order contributions is utilized. Different sets of phenomenological intensity parameters Omega(lambda) (lambda=1,2,3,4,5,6) are discussed. The set of better quality is used to analyze the influence of third-order effects through odd intensity parameters in the new approximation. Fluoroindate glasses of compositions (40-x)InF3-20ZnF(2)-20SrF(2)-16BaF(2)-2GdF(3)-2NaF-xTmF(3) with x=1, 2 and 3 mol% were prepared, and the absorption spectra at room temperature in the spectral range from 300 to 2500 nm were obtained. The experimental oscillator strengths determined from the area under the absorption band are compared to the calculated ones. (C) 1998 Elsevier B.V. S.A.
Resumo:
We report the successful fabrication of planar waveguides in rare-earth doped fluoroindate glass substrates. A new procedure for waveguide fabrication using a thermally evaporated AgF nonmetallic film was developed. The refractive index changes of more than 0.03, associated to low propagation losses achieved, open new perspectives and show the potentiality of using this glass family toward further developments in fabrication and design of integrated optical devices for optical communication wavelengths.© 1995 American Institute of Physics.
Resumo:
Fluorindate glasses containing 1,2,3,4 ErF3 mol % were prepared in a dry box under argon atmosphere. Absorption, Stokes luminescence (under visible and infrared excitation), the dependence of 4S3/2, 4I11/2, and 4I13/2 lifetimes with Er concentration, and upconversion under Ti-saphire laser excitation at λ=790 nm were measured, mostly at T=77 and 300 K. The upconversion results in a strong green emission and weaker blue and red emissions whose intensity obeys a power-law behavior I∼Pn, where P is the infrared excitation power and n=1.6, 2.1, and 2.9 for the red, green, and blue emissions, respectively. The red emission exponent n=1.5 can be explained by a cross relaxation process. The green and blue emissions are due to excited state absorption (ESA) and energy transfer (ET) processes that predict a factor n=2 and n=3 for the green and blue emissions, respectively. From transient measurements we concluded that for lightly doped samples the green upconverted emission is originated due to both processes ESA and ET. However, for heavily doped samples ET is the dominant process.
Resumo:
We report on efficient frequency upconversion in Er3+-doped fluoroindate glass. The process is observed under 1.48 μm laser diode excitation and results in fluorescence generation in the range from ultraviolet to near-infrared radiation. The study was performed for samples containing 1, 2, and 3 ErF3 mol % in the range of temperatures from 24 to 448 K. The upconverted signals were studied as a function of the laser intensity, and their dynamical behavior is described using a rate equation model which allows us to obtain the energy transfer rates between Er3+ ions in pairs and triads.
Resumo:
Glasses of composition 40InF3-20SrF2-16BaF2-20ZnF 2-2GdF3-2NaF (mol%) have been prepared under controlled atmosphere. The time response of the stresses under the application of a constant strain was determined by microellipsometer technique, performed in ambient atmosphere at T < Tg = 294°C. The glasses show a Newtonian behavior at small stress level. During the relaxation process, very small grooves perpendicular to the applied strain appeared on the glass surface and affected its behavior after a time. The formation of these grooves is associated with the ambient atmosphere. Measurements in dry atmosphere showed that humidity was an important parameter in the relaxation process.
Resumo:
In this work an analysis of the Judd-Ofelt phenomenological Ωλ intensity parameters for the Pr3+ ion in fluoroindate glass is made. Different Pr3+ concentrations, namely 1, 2, 3 and 4 mol% are used. The experimental oscillator strengths have been determined from the absorption spectra. A consistent set of parameters is obtained only with the inclusion of odd rank third order intensity parameters and if the band at 21 470 cm-1 is assigned to the 3H4 → 3P1 transition and the 1I6 component is incorporated in the 3H4 → 3P2 transition at 22 700 cm-1.
Resumo:
In rare earth ion doped solids, a resonant non-linear refractive index, n2, appears when the laser pumps one of the ion excited states and the refractive index change is proportional to the excited state population. In these solids there are usually thermal and non-thermal lensing effects, where the non-thermal one is due to the polarizability difference, Δα, between excited and ground states of the ions. We have used the time resolved Z-scan and a mode-mismatched thermal lens technique with an Ar+ ion laser in Er+3 (20ZnF2-20SrF2-2NaF-16BaF2-6GaF3-(36 - x)InF3-xErF3, with x= 1, 2, 3 and 4 mol%) and Nd+3 (20SrF2-16BaF2-20ZnF2-2GdF3-2NaF-(40 - x)InF3-xNdF3, with x = 0.1, 0.25, 0.5-1 mol%) doped fluoroindate glasses. In both samples we found that the non-linear refraction is due to the thermal effect, while the non-thermal effect is negligible. This result indicates that in fluoride glasses Δα is very small (less than 10-26 cm3). We also measured the imaginary part of the non-linear refractive index (n″2) due to absorption saturation.
Resumo:
This paper describes the stabilizing effect of MgF2 on the binary system InF3-BaF2. A complete investigation of the In-Ba-Mg system led to samples up to 5 mm in thickness. Further optimization of this system was achieved by incorporation of other fluorides, resulting in increased resistance to devitrification. Thermal and optical data are reported.
Resumo:
We report the observation of intense frequency up-conversion in Nd3+-doped fluoroindate glasses pumped by the second harmonic of a cw mode-locked Nd: YAG laser. Mechanisms for generating the observed emissions are discussed.