8 resultados para Fluorescence spectrum

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Argilas constituem uma classe de complexos micro-heterogêneos e podem ser utilizados como substrato para adsorção. O seu comportamento de sorção em fase sólida intensificada pela presença de surfactantes, argilas organofílicas, é um importante fenômeno explorado pela tecnologia ambiental para a remoção de compostos orgânicos policíclicos (hidrocarbonetos aromáticos policíclicos, HPA) da água, introduzidos no ambiente por fontes antropogênicas. Este trabalho tem por objetivo estudar o comportamento fotofísico do antraceno, como modelo de HPA, em sistemas micro-heterogêneos argila-surfactantes-íons metálicos (M(II)= Cd(II), Cu(II), Hg(II), Ni(II) e Pb(II); surfactantes: CTACl; SDS; TR-X100). Os estudos foram conduzidos pelo monitoramento na mudança das propriedades de fluorescência estática e na supressão da emissão do antraceno utilizado como sonda fluorescente. Como supressores foram utilizados os cátions metálicos: Cd(II), Cu(II), Hg(II), Ni(II) e Pb(II). O perfil do espectro de fluorescência e os resultados dos ensaios de supressão da fluorescência da sonda permitiram inferir na localização do sítio de solubilização do antraceno nos sistemas micro-heterogêneos estudados e na conseqüente organização dos mesmos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of biological membranes may be improved by investigating physical properties of vesicles from natural or synthetic amphiphiles. The application of vesicles as mimetic agents depends on the knowledgment of their structure and properties. Vesicles having different curvature and size may be obtained using different preparation protocols. We have used differential scanning calorimetry (DSC) and steady-state fluorescence to investigate the gel to liquid-crystal phase transition of vesicles prepared by sonication (SUV) and non-sonication (GUV) of the synthetic dioctadecyldimethylammonium bromide (DODAB) in aqueous solution. DSC thermograms for a non-sonicated dispersion show a well-defined pre- and main transition corresponding to two narrow peaks at 36 and 45°C in the first upscan, while in a second upscan, only the main peak was observed. The sharpness of the peaks indicate a cooperative phase behavior for GUV. For a sonicated DODAB dispersion, the first upscan shows a third peak at 40.3°C, whereas for the second upscan the peaks are not well-defined, indicating a less cooperative phase behavior. Alternatively, the fluorescence quantum yield (Φ f) and the anisotropy (r) of trans, trans, trans-1-[4-(3-carboxypropyl)-phenyl]-6-[4-butylphenyl]-1,3,5-hexatriene (4H4A) and the ratio I 1/I 3 of the first to the third vibronic peaks of the pyrene emission spectrum as function of temperature are used as well to describe the phase behavior of DODAB sonicated and non-sonicated dispersions. It is in good agreement with the DSC results that the cooperativity of the thermotropic process is diminished under sonication of the DODAB dispersion, meaning that sonication changes from homogeneous to heterogeneous populations of the amphiphile aggregates. The pre- and main transitions obtained from these techniques are in fairly good accord with results from the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autism spectrum disorders are severe psychiatric diseases commonly identified in the population. They are diagnosed during childhood and the etiology has been much debated due to their variations and complexity. Onset is early and characterized as communication and social interaction disorders and as repetitive and stereotyped behavior. Austistic disorders may occur together with various genetic and chromosomal diseases. Several chromosomal regions and genes are implicated in the predisposition for these diseases, in particular those with products expressed in the central nervous system. There are reports of autistic and mentally handicapped patients with submicroscopic subtelomeric alterations at the distal end of the long arm of chromosome 2. Additionally, there is evidence that alterations at 2q37 cause brain malformations that result in the autistic phenotype. These alterations are very small and not identified by routine cytogenetics to which patients are normally submitted, which may result in an underestimation of the diagnosis. This study aimed at evaluating the 2q37 region in patients with autistic disorders. Twenty patients were studied utilizing the fluorescence in situ hybridization technique with a specific probe for 2q37. All of them were also studied by the GTC banding technique to identify possible chromosomal diseases. No alterations were observed in the 2q37 region of the individuals studied, and no patient presented chromosomal diseases. This result may be due to the small sample size analyzed. The introduction of routine analysis of the 2q37 region for patients with autistic disorders depends on further studies. ©FUNPEC-RP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.