58 resultados para Finite Element Method (FEM)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Resumo:
The finite element method (FEM) involves a series of computational procedures to calculate the stress in each element, which performs a model solution. Such a structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the FEM environment to view a variety of parameters, and to fully identify implications of the analysis. Objective: An overview to show application of FEM in dentistry was undertaken. Literature review: This paper shows the basic concept, advances, advantages, limitations and applications of finite element method (FEM) in dentistry. Conclusion: It is extremely important to verify what the purpose of the study is in order to correctly apply FEM.
Resumo:
Introduction: The finite element method (FEM) involves a series of computational procedures to calculate the stress in each element, which performs a model solution. Such a structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the FEM environment to view a variety of parameters, and to fully identify implications of the analysis. Objective: An overview to show application of FEM in dentistry was undertaken. Literature review: This paper shows the basic concept, advances, advantages, limitations and applications of finite element method (FEM) in dentistry. Conclusion: It is extremely important to verify what the purpose of the study is in order to correctly apply FEM.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This work presents a numerical study of the tri-dimensional convection-diffusion equation by the control-volume-based on finite-element method using quadratic hexahedral elements. Considering that the equation governing this problem in its main variable may represent several properties, including temperature, turbulent kinetic energy, viscous dissipation rate of the turbulent kinetic energy, specific dissipation rate of the turbulent kinetic energy, or even the concentration of a contaminant in a given medium, among others, the wide applicability of this problem is thus evidenced. Three cases of temperature distributions will be studied specifically in this work, in addition to one case of pollutant dispersion upon analysis of the concentration of a contaminant in a fixed flow point. Some comparisons will be carried out against works found in the open literature, while others will be done according to each phenomenon characteristics.
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.
Resumo:
A finite element analysis was carried out to study the role of prefabricated threaded split shaft post (Flexi-Post) on dentinal stress in pulpless tooth. Three dimensional plane strain model of mesio-distal section of a human maxillary central incisor without restoration was analysed with the MSC/NASTRAN (MacNeal/ Schwendler) general purpose finite analysis program was executed on a microcomputer. The model as discretized into 48.954 axisymmetric finite elements defined by 10.355 nodes. Each element was assigned unique elastic properties to represent the materials modeled. Homogeneity, isotropy and linear elasticity were assume for all material. A simulation of static load of 100N was applied to the incisal edge of the post; vertical. Maximal principal stresses and von Mises equivalent stress were calculated. Using the element analysis model employed in this study, the following can be concluded concerning threaded split shaft post (Flexi-Post): Maximum principal stresses in dentin were located at cervical place and at the post apex. The apical threads of the post not redirecting stresses away from the root.
Resumo:
A numerical scheme based on the Finite Element Method (FEM) is presented to calculate the full solution of a three-dimensional steady magnetohydrodynamic (MHD) flow with moderately high Hartmann numbers and interaction parameters. An incompressible, viscous and electrically conducting liquid-metal is considered. Assuming a low magnetic Reynolds number, the solution method solves the coupled Navier-Stokes and Maxwell's equations through the use of a penalty function method. Results are presented for Hartmann numbers in the range 10(2)-10(3).
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.
Resumo:
In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.
Resumo:
About 99% of mechanical failures are consequence of the phenomena of fatigue, which consists on the progressive weakening of the resistant section of a mechanical component due to the growing of cracks caused by fluctuating loadings. A broad diversity of factors influences the fatigue life of a mechanical component, like the surface finishing, scale factors, among others, but none is as significantly as the presence of geometric severities. Stress concentrators are places where fatigue cracks have a greater probability to occur, and so on, the intuit of this work is to develop a consistent and trustfully methodology to determine the theoretical stress concentration factor of mechanical components. Copyright © 2007 SAE International.