52 resultados para Feature extraction

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most face recognition approaches require a prior training where a given distribution of faces is assumed to further predict the identity of test faces. Such an approach may experience difficulty in identifying faces belonging to distributions different from the one provided during the training. A face recognition technique that performs well regardless of training is, therefore, interesting to consider as a basis of more sophisticated methods. In this work, the Census Transform is applied to describe the faces. Based on a scanning window which extracts local histograms of Census Features, we present a method that directly matches face samples. With this simple technique, 97.2% of the faces in the FERET fa/fb test were correctly recognized. Despite being an easy test set, we have found no other approaches in literature regarding straight comparisons of faces with such a performance. Also, a window for further improvement is presented. Among other techniques, we demonstrate how the use of SVMs over the Census Histogram representation can increase the recognition performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques based on signal analysis for leak detection in water supply systems typically use long pressure and/or flow data series of variable length. This paper presents the feature extraction from pressure signals and their application to the identification of changes related to the onset of a leak. Example signals were acquired from an experimental laboratory circuit, and features were extracted from temporal domain and from transformed signals. Statistical analysis of features values and a classification method were applied. It was verified the feasibility of using feature vectors for distinguish data acquired in the absence or presence of a leak.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The acquisition and update of Geographic Information System (GIS) data are typically carried out using aerial or satellite imagery. Since new roads are usually linked to georeferenced pre-existing road network, the extraction of pre-existing road segments may provide good hypotheses for the updating process. This paper addresses the problem of extracting georeferenced roads from images and formulating hypotheses for the presence of new road segments. Our approach proceeds in three steps. First, salient points are identified and measured along roads from a map or GIS database by an operator or an automatic tool. These salient points are then projected onto the image-space and errors inherent in this process are calculated. In the second step, the georeferenced roads are extracted from the image using a dynamic programming (DP) algorithm. The projected salient points and corresponding error estimates are used as input for this extraction process. Finally, the road center axes extracted in the previous step are analyzed to identify potential new segments attached to the extracted, pre-existing one. This analysis is performed using a combination of edge-based and correlation-based algorithms. In this paper we present our approach and early implementation results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parkinson's disease (PD) automatic identification has been actively pursued over several works in the literature. In this paper, we deal with this problem by applying evolutionary-based techniques in order to find the subset of features that maximize the accuracy of the Optimum-Path Forest (OPF) classifier. The reason for the choice of this classifier relies on its fast training phase, given that each possible solution to be optimized is guided by the OPF accuracy. We also show results that improved other ones recently obtained in the context of PD automatic identification. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be in-viable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the bats behaviour, which has never been applied to this context so far. The wrapper approach combines the power of exploration of the bats together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in five public datasets have demonstrated that the proposed approach can outperform some well-known swarm-based techniques. © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Feature selection has been actively pursued in the last years, since to find the most discriminative set of features can enhance the recognition rates and also to make feature extraction faster. In this paper, the propose a new feature selection called Binary Cuckoo Search, which is based on the behavior of cuckoo birds. The experiments were carried out in the context of theft detection in power distribution systems in two datasets obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the fields of Machine Vision and Photogrammetry, extracted straight lines from digital images can be used either as vector elements of a digital representation or as control entities that allow the determination of the camera interior and exterior orientation parameters. Applications related with image orientation require feature extraction with subpixel precision, to guarantee the reliability of the estimated parameters. This paper presents three approaches for straight line extraction with subpixel precision. The first approach considers the subpixel refinement based on the weighted average of subpixel positions calculated on the direction perpendicular to the segmented straight line. In the second approach, a parabolic function is adjusted to the grey level profile of neighboring pixels in a perpendicular direction to the segmented line, followed by an interpolation of this model to estimate subpixel coordinates of the line center. In the third approach, the subpixel refinement is performed with a parabolic surface adjustment to the grey level values of neighboring pixels around the segmented line. The intersection of this surface with a normal plane to the line direction generates a parabolic equation that allows estimating the subpixel coordinates of the point in the straight line, assuming that this is the critical point of this function. Three experiments with real images were made and the approach based on parabolic surface adjustment has presented better results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a methodology for automatic extraction of road segments from images with different resolutions (low, middle and high resolution) is presented. It is based on a generalized concept of lines in digital images, by which lines can be described by the centerlines of two parallel edges. In the specific case of low resolution images, where roads are manifested as entities of 1 or 2 pixels wide, the proposed methodology combines an automatic image enhancement operation with the following strategies: automatic selection of the hysteresis thresholds and the Gaussian scale factor; line length thresholding; and polygonization. In medium and high resolution images roads manifest as narrow and elongated ribbons and, consequently, the extraction goal becomes the road centerlines. In this case, it is not necessary to apply the previous enhancement step used to enhance roads in low resolution images. The results obtained in the experimental evaluation satisfied all criteria established for the efficient extraction of road segments from different resolution images, providing satisfactory results in a completely automatic way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a methodology is proposed for the geometric refinement of laser scanning building roof contours using high-resolution aerial images and Markov Random Field (MRF) models. The proposed methodology takes for granted that the 3D description of each building roof reconstructed from the laser scanning data (i.e., a polyhedron) is topologically correct and that it is only necessary to improve its accuracy. Since roof ridges are accurately extracted from laser scanning data, our main objective is to use high-resolution aerial images to improve the accuracy of roof outlines. In order to meet this goal, the available roof contours are first projected onto the image-space. After that, the projected polygons and the straight lines extracted from the image are used to establish an MRF description, which is based on relations ( relative length, proximity, and orientation) between the two sets of straight lines. The energy function associated with the MRF is minimized by using a modified version of the brute force algorithm, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding laser scanning polygon projected onto the image-space. The preliminary results showed that the proposed methodology is promising, since most sides of the refined polygons are geometrically better than corresponding projected laser scanning straight lines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article proposes a method for 3D road extraction from a stereopair of aerial images. The dynamic programming (DP) algorithm is used to carry out the optimization process in the object-space, instead of usually doing it in the image-space such as the DP traditional methodologies. This means that road centerlines are directly traced in the object-space, implying that a mathematical relationship is necessary to connect road points in object and image-space. This allows the integration of radiometric information from images into the associate mathematical road model. As the approach depends on an initial approximation of each road, it is necessary a few seed points to coarsely describe the road. Usually, the proposed method allows good results to be obtained, but large anomalies along the road can disturb its performance. Therefore, the method can be used for practical application, although it is expected some kind of local manual edition of the extracted road centerline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste artigo é proposto um método semiautomático para extração de rodovias combinando um estereopar de imagens aéreas de baixa resolução com um poliedro gerado a partir de um modelo digital do terreno (MDT). O problema é formulado no espaço-objeto através de uma função objetivo que modela o objeto 'rodovia' como uma curva suave e pertencente a uma superfície poliédrica. A função objetivo proposta depende também de informações radiométricas, que são acessadas no espaço-imagem via relação de colinearidade entre pontos da rodovia no espaço-objeto e os correspondentes nos espaços imagem do estereopar. A linha poligonal que melhor modela a rodovia selecionada é obtida por otimização no espaço-objeto da função objetivo, tendo por base o algoritmo de programação dinâmica. O processo de otimização é iterativo e dependente do fornecimento por um operador de uma aproximação inicial para a rodovia selecionada. Os resultados obtidos mostraram que o método é robusto frente a anomalias existentes ao longo das rodovias, tais como obstruções causadas por sombras e árvores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach using straight lines as features to solve the photogrammetric space resection problem is presented. An explicit mathematical model relating straight lines, in both object and image space, is used. Based on this model, Kalman Filtering is applied to solve the space resection problem. The recursive property of the filter is used in an iterative process which uses the sequentially estimated camera location parameters to feedback to the feature extraction process in the image. This feedback process leads to a gradual reduction of the image space for feature searching, and consequently eliminates the bottleneck due to the high computational cost of the image segmentation phase. It also enables feature extraction and the determination of feature correspondence in image and object space in an automatic way, i.e., without operator interference. Results obtained from simulated and real data show that highly accurate space resection parameters are obtained as well as a progressive processing time reduction. The obtained accuracy, the automatic correspondence process, and the short related processing time show that the proposed approach can be used in many real-time machine vision systems, making possible the implementation of applications not feasible until now.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the concept of Matching Parallelepiped (MP) is presented. It is shown that the volume of the MP can be used as an additional measure of `distance' between a pair of candidate points in a matching algorithm by Relaxation Labeling (RL). The volume of the MP is related with the Epipolar Geometry and the use of this measure works as an epipolar constraint in a RL process, decreasing the efforts in the matching algorithm since it is not necessary to explicitly determine the equations of the epipolar lines and to compute the distance of a candidate point to each epipolar line. As at the beginning of the process the Relative Orientation (RO) parameters are unknown, a initial matching based on gradient, intensities and correlation is obtained. Based on this set of labeled points the RO is determined and the epipolar constraint included in the algorithm. The obtained results shown that the proposed approach is suitable to determine feature-point matching with simultaneous estimation of camera orientation parameters even for the cases where the pair of optical axes are not parallel.