28 resultados para Fast Computation Algorithm

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Optimum-Path Forest (OPF) classifier is a recent and promising method for pattern recognition, with a fast training algorithm and good accuracy results. Therefore, the investigation of a combining method for this kind of classifier can be important for many applications. In this paper we report a fast method to combine OPF-based classifiers trained with disjoint training subsets. Given a fixed number of subsets, the algorithm chooses random samples, without replacement, from the original training set. Each subset accuracy is improved by a learning procedure. The final decision is given by majority vote. Experiments with simulated and real data sets showed that the proposed combining method is more efficient and effective than naive approach provided some conditions. It was also showed that OPF training step runs faster for a series of small subsets than for the whole training set. The combining scheme was also designed to support parallel or distributed processing, speeding up the procedure even more. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional Newton and fast decoupled power flow (FDPF) methods have been considered inadequate to obtain the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. It is well known that the PV and Q-theta decoupling assumptions of the fast decoupled power flow formulation no longer hold in the vicinity of the critical point. Moreover, the Jacobian matrix of the Newton method becomes singular at this point. However, the maximum loading point can be efficiently computed through parameterization techniques of continuation methods. In this paper it is shown that by using either theta or V as a parameter, the new fast decoupled power flow versions (XB and BX) become adequate for the computation of the maximum loading point only with a few small modifications. The possible use of reactive power injection in a selected PV bus (Q(PV)) as continuation parameter (mu) for the computation of the maximum loading point is also shown. A trivial secant predictor, the modified zero-order polynomial which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used in predictor step. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approach for the IEEE test systems (14, 30, 57 and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that parameters can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with approaches for sparse matrix substitutions using vector processing. Many publications have used the W-matrix method to solve the forward/backward substitutions on vector computer. Recently a different approach has been presented using dependency-based substitution algorithm (DBSA). In this paper the focus is on new algorithms able to explore the sparsity of the vectors. The efficiency is tested using linear systems from power systems with 118, 320, 725 and 1729 buses. The tests were performed on a CRAY Y MP2E/232. The speedups for a fast-forward/fast-backward using a 1729-bus system are near 19 and 14 for real and complex arithmetic operations, respectively. When forward/backward is employed the speedups are about 8 and 6 to perform the same simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameterized fast decoupled power flow (PFDPF), versions XB and BX, using either theta or V as a parameter have been proposed by the authors in Part I of this paper. The use of reactive power injection of a selected PVbus (Q(PV)) as the continuation parameter for the computation of the maximum loading point (MLP) was also investigated. In this paper, the proposed versions obtained only with small modifications of the conventional one are used for the computation of the MLP of IEEE test systems (14, 30, 57 and 118 buses). These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approaches are presented and discussed. The results show that the characteristics of the conventional FDPF method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that these versions can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. A trivial secant predictor, the modified zero-order polynomial, which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used for the predictor step. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional Newton and fast decoupled power flow methods are considered inadequate for obtaining the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. At this point, the Jacobian matrix of the Newton method becomes singular. In addition, it is widely accepted that the P-V and Q-theta decoupling assumptions made for the fast decoupled power flow formulation no longer hold. However, in this paper, it is presented a new fast decoupled power flow that becomes adequate for the computation of the maximum loading point by simply using the reactive power injection of a selected PV bus as a continuation parameter. Besides, fast decoupled methods using V and 0 as parameters and a secant predictor are also presented. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained for the IEEE systems (14 and 118 buses) show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the use of para-orthogonal polynomials in solving the frequency analysis problem. Through a transformation of Delsarte and Genin, we present an approach for the frequency analysis by using the zeros and Christoffel numbers of polynomials orthogonal on the real line. This leads to a simple and fast algorithm for the estimation of frequencies. We also provide a new method, faster than the Levinson algorithm, for the determination of the reflection coefficients of the corresponding real Szego polynomials from the given moments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, genetic algorithms concepts along with a rotamer library for proteins side chains are used to optimize the tertiary structure of the hydrophobic core of Cytochrome b(562) starting from the known PDB structure of its backbone which is kept fixed while the side chains of the hydrophobic core are allowed to adopt the conformations present in the rotamer library. The atoms of the side chains forming the core interact via van der Waals energy. Besides the prediction of the native core structure, it is also suggested a set of different amino acid sequences for this core. Comparison between these new cores and the native are made in terms of their volumes, van der Waals energies values and the numbers of contacts made by the side chains forming the cores. This paper proves that genetic algorithms area efficient to design new sequence for the protein core. (C) 2007 Elsevier B.V. All rights reserved.