83 resultados para Families of royal descent

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prochilodus lineatus, an abundant species in the Mogi-Guaçu river basin, represents a large part of the region's fishing potential. Karyotypic analyses based on classic cytogenetic techniques have revealed the presence of 54 metasubmetacentric type chromosomes, together with the occurrence of small supernumerary chromosomes with intra and interindividual variations. This paper describes the genomic organization of two families of satellite DNA in the P. lineatus genome. The chromosomal localization these two repetitive DNA families through fluorescence in situ hybridization (FISH) demonstrated that the SATH1 satellite DNA family, composed of approximately 900 bp, was located in the pericentromeric region of a group of chromosomes of the standard complement, as well as on all the B chromosomes. The SATH2 satellite family has a monomeric unit of 441 bp and was located in the pericentromeric regions of some chromosomes of the standard complement, but was absent in the B chromosomes. Double FISH analyses showed that these two families participate jointly in the pericentromeric organization of several chromosomes of this species. The data obtained in this study support the hypothesis that the B chromosomes derive from chromosomes of the standard complement, which are carriers of the SATH1 satellite DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the spermatheca was investigated in specimens of five termite families with the aid of light microscopy. In longitudinal section, the spermatheca of Zootermopsis nevadensis (Termopsidae) showed the shape of an umbrella with a secretory portion and duct. The other termite species, which belong to the families Kalotermitidae, Serritermitidae, Rhinotermitidae and Termitidae showed a spermatheca constituted only by the secretory portion. This structure was an elongate, fingerlike tube with a recurved and blind extremity. The spermatheca wall was composed of a single epithelium formed by class 3 secretory cells with a lumen lined by cuticle. The cuticle was thin and smooth or thick with digitiform projections in the species examined. All the termite females showed bundles of musculature outside of the spermatheca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bats present unique features among mammals with respect to reproduction, and although neotropical bats do not have a hibernation period, many of their reproductive characteristics vary seasonally and interspecifically. Thus, this work aimed to examine the reproductive structures of 18 species belonging to five families of Brazilian bats. The gross anatomy of the testes varied little; however, the epididymis of Emballonuridae and Vespertilionidae showed exceptional structures with a large elongation of the caudal region. We observed a wide variation in the positioning of the testes: Phyllostomidae and Noctilionidae presented external testes; Emballonuridae and Molossidae presented migratory testes that may be in intra-abdominal or external positions; and Vespertilionidae displayed scrotal testes. In the histological evaluation, we observed a different pattern in vespertilionid species, with testicular regression and sperm retention/storage in the cauda epididymis in the five species analyzed. Similar testicular regression was observed in Molossops temminckii; however, sperm retention/storage was not observed in this species. These data suggest that although the species analyzed are tropical species that do not present a prolonged period of torpor (hibernation), they still maintain a period of seminiferous tubule regression and sperm storage very similar to that observed in hibernating bats. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects of the suborder Heteroptera are known for their odor, for being pests, or for being disease carriers. To gain better insight into the cytogenetic characteristics of heteropterans, 18 species of terrestrial Heteroptera belonging to eight families were studied. The presence of heteropycnotic corpuscles during prophase I, terminal or interstitial chiasmas, telomeric associations between chromosomes, ring disposals of autosomes during metaphase, and late migrations of the sex chromosomes during anaphase were analyzed. These features showed identical patterns to other species of Heteroptera previously described in the literature. Another studied characteristic was chromosome complements. The male chromosome complements observed were 2n = 12 chromosomes [10A + XY, Galgupha sidae (Amyot & Serville) (Corimelaenidae) and Pachycoris torridus (Scopoli) (Scutelleridae)]; 2n = 13 [10A + 2m + X0, Harmostes serratus (Fabricius), Harmostes apicatus (Stål), Jadera haematoloma (Herrich-Schaeffer), Jadera sanguinolenta (Fabricius), Jadera sp. (Rhopalidae)], and Neomegalotomus parvus (Westwood) (Alydidae); 2n = 13 [12A + X0, Stenocoris furcifera (Westwood) (Alydidae); 2n = 14 [12A + XY, Dictyla monotropidia (Stål) (Tingidae)]; 2n = 19 [18A + X0, Acanonicus hahni (Stål) (Coreidae)]; 2n = 21 [18A + 2m + X0, Acanthocephala sp. (Dallas) (Coreidae)]; 2n = 27 [24A + 2m + X0, Anisoscelis foliacea marginella (Dallas) (Coreidae)]; 2n = 18 [16A + XY, Oncopeltus fasciatus (Dallas) (Lygaeidae)]; 2n = 17 [14A + X1X2Y, Oxycarenus hyalinipennis (Costa) (Lygaeidae)]; 2n = 16 [12A + 2m + XY, Pachybrachius bilobatus (Say) (Lygaeidae)]; 2n = 26 [24A + XY, Atopozelus opsinus (Elkins) (Reduviidae)]; and 2n = 27 [24A + X1X2Y, Doldina carinulata (Stål) (Reduviidae)]. The diversity of the cytogenetic characteristics of Heteroptera was reflected in the 18 studied species. Thus, this study extends the knowledge of these characteristics, such as the variations related to chromosome complements, sex chromosome systems, and meiotic behavior.