8 resultados para FORMABILITY

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyroelectric sensors work as a thermal transducer converting the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. Ferroelectric ceramics and ferroelectric polymers have been extensively used as thermal detectors. More recently the research in the field of pyroelectricity has been concentrated on discovering materials with higher figures of merit (FOM), which means better sensing materials. Composite materials obtained with ferroelectric ceramics embedded in polymer host have received great attention because of their formability, mechanical resistance and the possibility to change their dielectric property varying the volume fraction of ceramic particles. In this work composite films made of modified lead titanate (PZ34) and poly(ether-ether-ketone) (PEEK) were characterized and used as sensing element to measure X-ray intensity in the ortovoltage range (120 - 300 kVp). The sensor response varies from 2.70 V to 0.80 V in the energy fluency range of 6.30 to 37.20 W/m(2). Furthermore the absorbed energy was analyzed as a function of the ionizing energy. The results indicate that the PZ34/PEEK composite with 60/40 vol.% can be useful to monitor X-ray radiation therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dual phase steels, characterised by good formability and excellent surface finish, are suitable for applications where processing involves cold deformation. In this context an investigation has been conducted into the cold deformation aging susceptibility of carbon steel API-5L-B and microalloyed steel API-5L-X52, both with dual phase microstructures. Changes in mechanical properties such as phase microhardness, ultimate tensile strength, and yield strength in both types of steel were observed at aging temperatures of 25, 80, and 150°C. This aging is associated with dislocation structures formed on ferrite grains in the vicinity of ferrite/martensite interfaces during intercritical treatments, which become preferential sites for solute atom diffusion. © 1999 IoM Communications Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuous technological advances require materials with properties that conventional material cannot display. Material property combinations are being the focus to the development of composite materials, which are considered a multiphase material that exhibits properties of the constituent phases. One interesting material to be studied as sensing material is the composite made of ferroelectric ceramic and polymeric matrix as a two-phases composite material. In that case, the combinations properties intended are the high piezo and pyroelectric activities of the dense ceramic with the impact resistance, flexibility, formability and low densities of the polymer. Using the piezoelectric property of the composite film, it can be used to detect acoustic emission (AE), which is a transient elastic wave generated by sudden deformation in materials under stress. AE can be applied for evaluating the health of structures in a nondestructive way and without any lapse of time. The preliminary result indicates that the composite Pz34/PEEK can be used as sensing material for nondestructive evaluation. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seeking to meet the requirements: relatively low cost of materials and wide applicability in the automotive industry. The best option was the steel Dual Phase (DP), because that is lighter, have high formability, meet the cost requirements and applicability, steel Dual Phase (DP) came to meet these requirements with its two-phase microstructure, ferrite and martensite microstructure who claim to respect and mechanical properties. In this context, the aim of this study was to correlate the microstructure revealed in metallography to the mechanical properties observed in hardness and tensile tests. The microstructure is revealed by etching in 2% nital and then captured images of the sample were processed in ImageJ software to aid in determining the volume fraction of the phases present. Therefore, the mechanical properties were evaluated with respect to volume fraction of the steel layers and analyzed DP 600 together with the mechanical properties obtained by Rockwell hardness test and tensile test. With the values of the mechanical properties calculated and tested, it was possible to describe the method of metallography, as the attack phase and counts, so that it can use this relationship tested/calculated property as a qualitative analytical tool. The method used for the correlation between the microstructure and mechanical properties confirmed the importance of the phases present in the Dual Phase steel to obtain the desired mechanical properties in the application of the steel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During clinical routine, the orthodontist uses several materials, which include metallic alloys in the form of metallic wires. However, it is necessary that the professional has some knowledge of the properties of those wires. Different types of wires are commercially available: stainless steel wires, chrome-cobalt wires, nickel-titanium wires and beta-titanium wires. Among the nickel-titanium wires, there are three subdivisions: a conventional alloy and two superelastic alloys. The superelasticity, associated to the effect of form memory, is a property used in orthodontics to initiate the dental movement in the first phase of the orthodontic treatment. This property is considered to be biologically compatible with the effective dental movement. These wires are available at the market in different transformation temperatures, and they offer the best adaptation in the groove of the bracket, simplicity and a faster treatment. However, they present little formability, and they don’t accept solder. They are also more onerous than other wires. Moreover, the low rigidity of these wires doesn’t allow them to be used for the retraction of the anterior teeth or closing of spaces. Therefore, the coherent use of superelastic orthodontic wires is recommended, accompanied by a detailed diagnosis and planning, so the result will be an efficient orthodontic correction, accomplished in a shorter period of time.