60 resultados para FOREST TREES

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the phenology of leaf, flower, and fruit phenology in the Atlantic rain forests of southeastern Brazil. For 17 months, we observed the phenological patterns of trees from two Atlantic forest types at four sites: premontane forest (Sites I and IV; the typical Atlantic rain forest) and coastal plain forest (Sites II and III). All sites experience a nonseasonal, tropical wet climate, characterized by an annual rainfall usually > 2000 mm and lacking a dry season. We tested for the occurrence (or absence) of seasonal phenological patterns within each site and compared the patterns detected among the four different forest sites using circular statistics. The expected weakly seasonal phenological patterns were not observed for these forests. Flowering and leaf flush patterns of Atlantic rain forest trees were significantly seasonal, concentrated at the beginning of the wettest season, and were significantly correlated with day length and temperature. These results stress the influence that seasonal variation in day length has on ever-wet forest tree phenology. Fruiting phenologies were aseasonal in all four forests. Flowering patterns did not differ significantly among three of the four forest sites analyzed, suggesting the occurrence of a general flowering pattern for Atlantic rain forest trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nos últimos 30 anos não foram levadas em consideração questões metodológicas importantes relativas ao estudo da fenologia de plantas. O uso de vários métodos na amostragem e avaliação dos dados fenológicos tem levado a uma grande dificuldade na interpretação e comparação de resultados. Esse estudo tem por objetivos realizar uma revisão da literatura em fenologia de florestas tropicais, compilando informações sobre os métodos de amostragem e avaliação utilizados, e discutir as proporções em que foram utilizados e as aplicações de cada método. Nos 60 estudos avaliados, os métodos de amostragem encontrados distribuem-se da seguinte forma: trilhas (20%), transecções (18%), parcelas (15%), coletores (10%), sendo que 37% dos estudos não definiram o método de amostragem utilizado. Para avaliação fenológica foram levantados dois métodos: qualitativo, presença e ausência das fenofases (20%) e quantitativo com quantificação da intensidade das fenofases (62%), e a combinação entre métodos qualitativos e quantitativos (17%). Ao longo do tempo cresceu a preocupação com a aplicação de métodos de amostragem e de avaliação quantitativa. Entretanto, a falta de padronização no uso desses métodos, mesmo nos dias atuais, ainda se faz presente, resultando na impossibilidade de comparação adequada dos estudos. É imprescindível, portanto, a realização de estudos comparativos de métodos fenológicos com espécies arbóreas em florestas tropicais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eucalyptus breeding is typically conducted by selection in open-pollinated progenies. As mating is controlled only on the female side of the cross, knowledge of outcrossing versus selling rates is essential for maintaining adequate levels of genetic variability for continuous gains. Outcrossing rate in an open-pollinated breeding population of Eucalyptus urophylla was estimated by two PCR-based dominant marker technologies, RAPD and AFLP, using 11 open-pollinated progeny arrays of 24 individuals. Estimated outcrossing rates indicate predominant outcrossing and suggest maintenance of adequate genetic variability within families. The multilcous outcrossing rate (t(m)) estimated from RAPD markers (0.93 +/- 0.027), although in the same range, was higher (alpha > 0.01) than the estimate based on AFLP (0.89 +/- 0.033). Both estimates were of similar magnitude to those estimated for natural populations using isozymes. The estimated Wright's fixation index was lower than expected based on t, possibly resulting from selection against selfed seedlings when sampling plants for the study. An empirical analysis suggests that 18 is the minimum number of dominant marker loci necessary to achieve robust estimates of t,. This study demonstrates the usefulness of dominant markers, both RAPD and AFLP, for estimating the outcrossing rate in breeding and natural populations of forest trees. We anticipate an increasing use of such PCR-based technologies in mating-system studies, in view of their high throughput and universality of the reagents, particularly for species where isozyme systems have not yet been optimized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires. Methods: We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment. Results: Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment. Conclusions: Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species ("legume mixture"), and a species-diverse, legume-poor mixture of all successional groups ("diverse mixture"). After 7 years, the legume mixture had 6-fold higher abundance of N(2)-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N(2)-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N(2)-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N(2)-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The species of the sandy plains forests (forests of the ''restingas'') have not yet had their spatial patterns studied as aids to the understanding of the diversity found in the different physiognomies along the Brazilian coast. In this paper a 10 x 10 m quadrat framework laid in a hectare of a tree dominant forest in the sandy plains of the Picinguaba area of the Serra do Mar State Park (municipality of Ubatuba, state of São Paulo, Brazil) was used to assess the spatial pattern of distribution for the ten most important species : Pera glabrata, Euterpe edulis, Eugenia brasiliensis, Alchornea triplinervea, Guatteria australis, Myrcia racemosa, Jacaranda semiserrata, Guarea macrophylla, Euplassa cantareirae and Nectandra oppositifolia. The spatial patterns were inferred through the calculations of their T-Square Index (C) and Dispersal Distance Index (I). P. glabrata shows a random pattern, E. edulis aggregate, E. brasiliensis, A. triplinervia, G. australis, E. cantareirae and N. oppositifolia with a tendency between aggregate and uniform and, M. racemosa, J. semiserrata and G. macrophylla between aggregate and random. Although the indexes are dependent of the sample size and of the technique adjustments, the relationship of the pattern with the environmental factors is shown by clustering methods. The results give confirmation of how the spatial patterns bring associations between populations and shape of the vegetation physiognomy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of a population of the understorey woody bamboo Merostachys riedeliana and different flooding regimes on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil was examined. A forest section with an area of 1.6 ha composed of 71 adjacent plots was located on a slope ending at the river margin. The section was divided into five topographical sectors according to the mean duration of river floods. In 1991 and 1998 all trees with a diameter at the base of the trunk greater than or equal to 5 cm were measured, identified and tagged, and all live bamboo culms were counted. Annualised estimates of the rates of tree mortality and recruitment, gain and loss of tree basal area, and change in bamboo density were calculated for each of the 71 plots and five topographical sectors as well as for diameter classes and tree species. To segregate patterns arising from spatially autocorrelated events, geostatistical analyses were used prior to statistical comparisons and correlations. In general, mortality rates were not compensated by recruitment rates but there was a net increase in basal area in all sectors, suggesting that the tree community as a whole was in a building phase. Tree community dynamics of the point bar forest (Depression and Levee sectors) differed from that of the upland forest (Ridgetop, Middle Slope and Lower Slope sectors) in the extremely high rates of gain in basal area. The predominant and specialised species, Inga vera and Salix humboldtiana, are probably favoured by relaxed competition in an environment stressed by long-lasting floods. In the upland forest, mortality rates were highest at the Middle Slope, particularly for smaller trees, while recruitment rates were lowest. As bamboo clumps were concentrated in this sector, the locally higher instability in the tree community probably resulted from the direct interference of bamboos. The density of bamboo culms in the upland forest was negatively correlated with the rates of tree recruitment and gain in basal area, and positively correlated with tree mortality rates. Bamboos therefore seemed to restrict the recruitment, growth and survival of trees.