6 resultados para FERRIC ION
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Low-density seedings of yeast cells of Paracoccidioides brasiliensis give poor growth (as assessed by plating efficiency test) on conventional mycological agar media, and therefore growth-promoting factors for this fungus were sought. Water-extracts of yeast cells of six P. brasiliensis isolates were all considerably effective in promoting the growth of low-density seedings of P. brasiliensis isolates Pb-18 and Hachisuga, but had little effect on isolate Bt-4. Horse serum, at a concentration range of 2-4%, moderately or considerably promoted the growth of these P. brasiliensis isolates. Combinations of the fungus cell extracts with horse serum were highly effective in promoting the growth of all of the fungal isolates. The fungus cell extracts showed siderophore (microbial iron carrier) activity. An iron-chelator, ethylenediaminetetraacetic acid, at a concentration of 100 μM also highly promoted the growth of the fungal isolates in the presence of horse serum, and ferric ion added to culture medium was considerably effective in the growth promotion. These results suggest that deficient utilization of external iron by the fungus cell is one of the growth-limiting processes for low-density seedings of yeast cells of P. brasiliensis on conventional mycological agar media.
Resumo:
The photo-Fenton process using potassium ferrioxalate as a mediator was investigated for the photodegradation of dichloracetic acid (DCA) and 2,4-dichlorophenol (DCP) in aqueous medium using solar light as source of irradiation. The influence of the solution depth, the light intensity and the effect of stirring the solution during irradiation process were evaluated using DCA as a model compound. A negligible influence of stirring the solution was observed when the concentration of ferrioxalate (FeOx) was 0.8 mM and solution depth was 4.5 or 14 cm. The optimum FeOx concentration determined for solution depths between 4.5 and 14 cm was 0.8 mM considering total organic carbon (TOC) removal during DCA irradiation. The high efficiency of the photo-Fenton process was demonstrated on summer days, when only 10 min of exposition (around noon) were sufficient to completely destroy the organic carbon of a 1.0 mM DCA solution in the presence of 0.8 mM FeOx and 6.0 mM H2O2 using a solution depth of 4.5 cm. It was observed that the photodegradation efficiency increases linearly with the solar light intensity up to values around 15 Wm-2 but this linear relationship does not hold above this value showing a square root dependence. The photodegradation of a solution of DCP/FeOx showed a lower TOC removal rate than that observed for DCA/FeOx, achieving ∼90% after 35 min irradiation under 19 Wm-2, while under this light intensity, the same TOC removal of DCA/FeOx was achieved in only 10 min irradiation. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.
Resumo:
In this work, a silica surface chemically modified with [3-(2,2′-dipyridylamine)propyl] groups, named [3-(2,2′- dipyridylamine)propyl]silica (Si-Pr-DPA) was prepared, characterized, and evaluated for its heavy metal adsorption characteristics from aqueous solution. To our knowledge, we are the first authors who have reported the present modification. The material was characterized using infrared spectroscopy, SEM, and NMR 29Si and 13C solid state. Batch and column experiments were conducted to investigate for heavy metal removal from dilute aqueous solution by sorption onto Si-Pr-DPA. From a number of studies the affinity of various metal ions for the Si-Pr-DPA sorbent was determined to follow the order Fe(III) > Cr(III) >> Cu(II) > Cd(II) > Pb(II) > Ni(II). Two standard reference materials were used for checking the accuracy and precision of the method. The proposed method was successfully applied to the analysis of environmental samples. This ligand material has great advantage for adsorption of transition-metal ions from aqueous medium due to its high degree of organofunctionalization associated with the large adsorption capacity, reutilization possibility, and rapidity in reaching the equilibrium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Patients with neurological disorders have an increased risk of oral and systemic diseases due to compromised oral hygiene. If patients lose the ability to swallow and chew food as a result of their disorder, enteral nutrition is often utilized. However, this type of feeding may modify salivary antioxidant defenses, resulting in increased oxidative damage and the emergence of various diseases. The aim of this study was to evaluate the effects of enteral nutrition on biochemical parameters in the unstimulated whole saliva composition of patients with neurological disorders. For this, enzymatic (superoxide dismutase - SOD; glutathione peroxidase - GPx) and non-enzymatic (uric acid; ferric ion reducing antioxidant power - FRAP) antioxidant activity, as well as a marker for oxidative damage (thiobarbituric acid reactive substances - TBARS) were analyzed. Unstimulated whole saliva was collected from 12 patients with neurological disorders and tube-feeding (tube-fed group - TFG), 15 patients with neurological disorders and normal feeding via the mouth (non-tube-fed group - NTFG), and 12 volunteers without neurological disorders (control group - CG). The daily oral hygiene procedures of TFG and NTFG patients were similar and dental care was provided monthly by the same institution's dentist. All patients exhibited adequate oral health conditions. The salivary levels of FRAP, uric acid, SOD, GPx, TBARS, and total protein were compared between studied groups. FRAP was increased (p < 0.05) in the NTFG (4651 +/- 192.5 mmol/mL) and the TFG (4743 +/- 116.7 mmol/mL) when compared with the CG (1844 +/- 343.8 mmol/mL). GPx values were lower (p < 0.05) in the NTGF (8.24 +/- 1.09 mmol/min/mg) and the TFG (8.37 +/- 1.60 mmol/min/mg) than in the CG (15.30 +/- 2.61 mmol/min/mg). Uric acid in the TFG (1.57 +/- 0.23 mg/dL) was significantly lower than in the NTFG (2.34 +/- 0.20 mg/dL) and the CG (3.49 +/- 0.21 mg/dL). Protein was significantly lower in the TFG (5.35 +/- 0.27 g/dL) than in the NTFG (7.22 +/- 0.57 g/dL) and the CG (7.86 +/- 0.54 g/dL). There was no difference in the salivary flow rate and SOD between groups. Enteral nutrition in patients with neurological disorders was associated with lower oxidative damage, resulting in increased salivary. antioxidant capacity. These results emphasize the importance of oral care for this population to prevent oral and systemic diseases. (C) 2014 Elsevier Ltd. All rights reserved.