58 resultados para FEM
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
In this work, a Finite Element Method treatment is outlined for the equations of Magnetoaerodynamics. In order to provide a good basis for numerical treatment of Magneto-aerodynamics, a full version of the complete equations is presented and FEM contribution matrices are deduced, as well as further terms of stabilization for the compressible flow case.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.
Resumo:
The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
The problem of the classification of the extensions of the Virasoro algebra is discussed. It is shown that all H-reduced G(r)-current algebras belong to one of the following basic algebraic structures: local quadratic W-algebras, rational U-algebras, nonlocal W-algebras, nonlocal quadratic WV-algebras and rational nonlocal UV-algebras. The main new features of the quantum Ir-algebras and their heighest weight representations are demonstrated on the example of the quantum V-3((1,1))-algebra.
Resumo:
Foram confrontadas nesta pesquisa a afirmação piagetiana de que o ensino da matemática deve basear-se no desenvolvimento das estruturas mentais da criança e a realidade do ensino dessa matéria na 1.ª série do primeiro grau. Estudou-se a relação existente entre a noção de conservação e o grau de desempenho em matemática. Constituíram a amostra 47 sujeitos da 1.ª série do 1.° grau (17 do sexo masc. e 30 do fem.), nível sócio-econômico médio-inferior para baixo-superior, idade de 6 anos e meio a 11 anos, sem escolarização anterior. A avaliação do desempenho relativo ao domínio da noção de conservação foi feita através do teste de conservação de quantidades descontínuas, e a do desempenho em matemática, através da observação sistemática e de uma prova. O coeficiente de correlação de postos de Good man e Kruskal (1945 e 1963] mostrou relação significante a um nível de 1% para conservação e porcentagem de acertos na prova (g = 0,7) e a um nível de 5% para a conservação e conceitos atribuídos pelo professor (G = 0,44). A análise dos dados categorizados pela técnica de Grizzle, Starmer e Koch (1969) a um nível de 5% indicou apenas efeito do fator sexo sobre a noção de conservação. Os resultados obtidos estão de acordo com a teoria piagetiana que indica ser a noção de conservação uma condição necessária para a aprendizagem da matemática, embora não suficiente.
Resumo:
Purpose - This paper proposes an interpolating approach of the element-free Galerkin method (EFGM) coupled with a modified truncation scheme for solving Poisson's boundary value problems in domains involving material non-homogeneities. The suitability and efficiency of the proposed implementation are evaluated for a given set of test cases of electrostatic field in domains involving different material interfaces.Design/methodology/approach - the authors combined an interpolating approximation with a modified domain truncation scheme, which avoids additional techniques for enforcing the Dirichlet boundary conditions and for dealing with material interfaces usually employed in meshfree formulations.Findings - the local electric potential and field distributions were correctly described as well as the global quantities like the total potency and resistance. Since, the treatment of the material interfaces becomes practically the same for both the finite element method (FEM) and the proposed EFGM, FEM-oriented programs can, thus, be easily extended to provide EFGM approximations.Research limitations/implications - the robustness of the proposed formulation became evident from the error analyses of the local and global variables, including in the case of high-material discontinuity.Practical implications - the proposed approach has shown to be as robust as linear FEM. Thus, it becomes an attractive alternative, also because it avoids the use of additional techniques to deal with boundary/interface conditions commonly employed in meshfree formulations.Originality/value - This paper reintroduces the domain truncation in the EFGM context, but by using a set of interpolating shape functions the authors avoided the use of Lagrange multipliers as well Mathematics in Engineering high-material discontinuity.
Resumo:
The objectives of this work were to evaluate three protein sources - soybean meal, fish meal and feather meal - and two methods of calculation of rations - the calculated in terms of crude protein (CP), according to recommendations of NRC (1988); and the proposed by the AFRC (1993), and calculated in terms of metabolizable protein (MP) - through the performance of calves. The animals were confined and submitted to five diets, that varied only protein sources in its composition, thus discriminated: SM- Soybean Meal, FsM- Fish Meal, FeM- Feather Meal, FsMU- Fish Meal and Urea, and FeMU Feather Meal and Urea. A complete diet was supplied, composed of 40% of sorghum silage and 60% of concentrate. All treatments possessed about of 2.56 Mcal/kg DM of metabolizable energy, being the treatments SM, FsM and FeM calculated by the system of CP, with 18% of CP, and the treatments FsMU and FeMU, calculated by the system of MP, with 16.3% of CP and a same amount of metabolizable protein than the treatment SM, with 112.0 grams of MP/day. Individually, the treatments did not present significant differences (P > 0.05) in the final alive weight, in daily gain weight and in dry matter intake, having differences only in the feed:gain ratio. The best feed:gain ratio happened in the treatment FsM and the worst in the treatment FeMU. It is concluded that the MP method provides similar results to the method of CP. The treatments with fish meal provide larger weight gains, smaller intake and better feed:gain ratio than the treatments with feather meal, staying the treatment soybean meal with intermediary daily gain.