9 resultados para Expert Testimony.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We discuss the decay of accelerated protons and illustrate how the Fulling-Davies-Unruh effect is indeed mandatory to maintain the consistency of standard Quantum Field Theory. The confidence level of the Fulling-Davies-Unruh effect must be the same as that of Quantum Field Theory itself.
Resumo:
Oil spills cause great damage to coastal habitats, especially when rapid and suitable response measures are not taken. Establishing high priority areas is fundamental for the operation of response teams. Under this context and considering the need for keeping all geographical information up-to-date for emergencial use, the present study proposes employing a decision tree coupled with a knowledge-based approach using GIS to assign oil sensitivity indices to Brazilian coastal habitats. The modelled system works based on rules set by the official standards of Brazilian Federal Environment Organ. We tested it on one of the littoral regions of Brazil where transportation of petroleum is most intense: the coast of the municipalities of Sao Sebastiao and Caraguatatuba in the northern littoral of São Paulo state, Brazil. The system automatically ranked the littoral sensitivity index of the study area habitats according to geographical conditions during summer and winter; since index ranks of some habitats varied between these seasons because of sediment alterations. The obtained results illustrate the great potential of the proposed system in generating ESI maps and in aiding response teams during emergency operations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An extended version of HIER, a query-the-user facility for expert systems is presented. HIER was developed to run over Prolog programs, and has been incorporated to systems that support the design of large and complex applications. The framework of the extended version is described,; as well as the major features of the implementation. An example is included to illustrate the use of the tool, involving the design of a specific database application.
Resumo:
Planning hot forging processes is a time-consuming activity with high costs involved because of the trial-and-error iterative methods used to design dies and to choose equipment and process conditions. Some processes demand many months to produce forged parts with controlled shapes, dimensions and microstructure. This paper shows how expert systems can help engineers to reduce the time needed to design precision forged parts and dies from machined parts. The software ADHFD interfacing MS Visual Basic v.5.0 and SolidEdge v.3.0 was used to design flashless hot forged gears, chosen from families of gears. © 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Purpose - The purpose of this paper is twofold: to analyze the computational complexity of the cogeneration design problem; to present an expert system to solve the proposed problem, comparing such an approach with the traditional searching methods available.Design/methodology/approach - The complexity of the cogeneration problem is analyzed through the transformation of the well-known knapsack problem. Both problems are formulated as decision problems and it is proven that the cogeneration problem is np-complete. Thus, several searching approaches, such as population heuristics and dynamic programming, could be used to solve the problem. Alternatively, a knowledge-based approach is proposed by presenting an expert system and its knowledge representation scheme.Findings - The expert system is executed considering two case-studies. First, a cogeneration plant should meet power, steam, chilled water and hot water demands. The expert system presented two different solutions based on high complexity thermodynamic cycles. In the second case-study the plant should meet just power and steam demands. The system presents three different solutions, and one of them was never considered before by our consultant expert.Originality/value - The expert system approach is not a "blind" method, i.e. it generates solutions based on actual engineering knowledge instead of the searching strategies from traditional methods. It means that the system is able to explain its choices, making available the design rationale for each solution. This is the main advantage of the expert system approach over the traditional search methods. On the other hand, the expert system quite likely does not provide an actual optimal solution. All it can provide is one or more acceptable solutions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.