13 resultados para Experimental Realization
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.
Resumo:
Biochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an and logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean and functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.
Resumo:
Bose-Einstein condensates with attractive interatomic interactions undergo collective collapse beyond a critical number. We show theoretically that if the low-lying collective modes of the condensate are excited, the radial breathing mode further destabilizes the condensate. Remarkably, excitation of the quadrupolar surface mode causes the condensate to become more stable, imparting quasiangular momentum to it. A significantly larger number of atoms may then occupy the condensate. Efforts are under way for the experimental realization of these effects. ©2001 The American Physical Society.
Resumo:
We study an ultracold and dilute superfluid Bose-Fermi mixture confined in a strictly one-dimensional (1D) atomic waveguide by using a set of coupled nonlinear mean-field equations obtained from the Lieb-Liniger energy density for bosons and the Gaudin-Yang energy density for fermions. We consider a finite Bose-Fermi interatomic strength gbf and both periodic and open boundary conditions. We find that with periodic boundary conditions-i.e., in a quasi-1D ring-a uniform Bose-Fermi mixture is stable only with a large fermionic density. We predict that at small fermionic densities the ground state of the system displays demixing if gbf >0 and may become a localized Bose-Fermi bright soliton for gbf <0. Finally, we show, using variational and numerical solutions of the mean-field equations, that with open boundary conditions-i.e., in a quasi-1D cylinder-the Bose-Fermi bright soliton is the unique ground state of the system with a finite number of particles, which could exhibit a partial mixing-demixing transition. In this case the bright solitons are demonstrated to be dynamically stable. The experimental realization of these Bose-Fermi bright solitons seems possible with present setups. © 2007 The American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Here we present an exploratory study on the use of laboratory teaching in four schools of Basic Education in Rio Claro, SP, three of them high school and one of the second cycle of basic education, developed in the years 2011 and 2012, under activities of the course Prática de Ensino e Estágio Supervisionado, the Degree in Physics - UNESP, Rio Claro campus and work with Pibid (Projeto Institucional de Bolsa de Iniciação à Docência) in agreement UNESP CAPES Notice 2009. Initially, we diagnose the situation and identify the laboratories using them for Teaching Physics, from direct observation and contact with teachers. Based on the experimental realization of educational activities in such schools, we discuss different teaching strategies, and using experiments built with inexpensive materials (Ferreira and Ramos, 2008). We analyzed the role of the teaching laboratory in the development of skills and abilities of students, related to the teaching and learning of Physics, as well as aspects concerning the use of instructional laboratories
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structural Health Monitoring (SHM) has diverse potential applications, and many groups work in the development of tools and techniques for monitoring structural performance. These systems use arrays of sensors and can be integrated with remote or local computers. There are several different approaches that can be used to obtain information about the existence, location and extension of faults by non destructive tests. In this paper an experimental technique is proposed for damage location based on an observability grammian matrix. The dynamic properties of the structure are identified through experimental data using the eigensystem realization algorithm (ERA). Experimental tests were carried out in a structure through varying the mass of some elements. Output signals were obtained using accelerometers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A q-deformed analogue of zero-coupled nucleon pair states is constructed and the possibility of accounting for pairing correlations examined. For the single orbit case, the deformed pairs are found to be more strongly bound than the pairs with zero deformation, when a real-valued q parameter is used. It is found that an appropriately scaled deformation parameter reproduces the empirical few nucleon binding energies for nucleons in the 1f7/2 orbit and 1g9/2 orbit. The deformed pair Hamiltonian apparently accounts for many-body correlations, the strength of higher-order force terms being determined by the deformation parameter q. An extension to the multishell case, with deformed zero-coupled pairs distributed over several single particle orbits, has been realized. An analysis of calculated and experimental ground state energies and the energy spectra of three lowermost 0+ states, for even-A Ca isotopes, reveals that the deformation simulates the effective residual interaction to a large extent.
Resumo:
Nowadays there is great interest in structural damage detection in systems using nondestructive tests. Once the failure is detected, as for instance a crack, it is possible to take providences. There are several different approaches that can be used to obtain information about the existence, location and extension of the fault in the system by non-destructive tests. Among these methodologies, one can mention different optimization techniques, as for instance classical methods, genetic algorithms, neural networks, etc. Most of these techniques, which are based on element-byelement adjustments of a finite element (FE) model, take advantage of the dynamic behavior of the model. However, in practical situations, usually, is almost impossible to obtain an accuracy model. In this paper, it is proposed an experimental technique for damage location. This technique is based on H: norm to obtain the damage location. The dynamic properties of the structure were identified using experimental data by eigensystem realization algorithm (ERA). The experimental test was carried out in a beam structure through varying the mass of an element. For the output signal was used a piezoelectric sensor. The signal of input of sine form was generated through SignalCalc® software.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Pediatria - FMB