4 resultados para Eupatorieae

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karyotypes of six species of the genus Stevia from Southern Brazil were studied, utilizing root tip metaphases. All species were diploid with 2n = 22 chromosomes. It was possible to identify each species by chromosome morphology. The basic chromosome number for Brazilian species of Stevia is X = 11. This number is also found in almost all South American species. We suggest that in Stevia there is an evolutionary trend toward chromosomal rearrangement, caused mainly by pericentric inversions. It was found that, in addition to aneuploidy and polyploidy, chromosomal rearrangements are common in the tribe Eupatorieae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides a general survey of the occurrence of diterpenes in the Asteraceae. Data on 4351 botanical occurrences were obtained from the literature. These were grouped by skeleton for each genus. Then, the genera were grouped by subtribes, which, in turn, were gathered in tribes, followed by subfamilies. In spite of the low number of species containing diterpenes, it was possible to describe some structural features of these compounds, i.e. The skeletal types in various taxa and the positions in some skeletons that are always oxidized or never undergo oxidation in some genera. Thus, it was verified that: in the subfamily Cichorioideae, only a few of the studied species possess diterpenes, wherein kaurane is the most frequent diterpene skeleton. In the Asteroideae, the presence of diterpenes is much greater than that in the Cichorioideae and Carduoideae. At tribal taxonomic level, for example, the Astereae produce labdanes and clerodanes; Heliantheae and Eupatorieae produce kauranes and labdanes, respectively; and Calenduleae produce pimaranes. Some taxonomic implications are presented. (c) 2005 the Linnean Society of London.