64 resultados para Esr
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The occurrence of subfossil material in bottom sediments of Couve Island, Ubatuba region, São Paulo State, is confirmed. The analyzed material consists of a bivalve shell that was dated by the electron spin resonance technique. By the additive irradiation method an archaeological absorbed dose of (25 +/- 5) Gy was obtained and calibration with other dating works in the same area allows the inference of an age of (25 +/- 5) x 10(2) years. The importance of this finding and its paleoecological implications could contribute to elucidating the nature of short-term environmental changes in the Brazilian coastline during the Holocene, as well as becoming an important tool to the understanding of the distribution and biological aspects of the bivalve fauna. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The IRSL and TL responses of three different feldspar crystals have been analysed. TL measurements were taken in the ultraviolet UV (290-370 nm) and the visible VIS (340-610 nm) regions of the spectrum. For the UV region and for a natural sample, peaks were observed at 283, 287 and 310 degrees C for grey, white and pink crystals, respectively. For samples irradiated after prior preheating, it was noted that TL peaks occurred at about 200 degrees C for all the samples; irradiation with high doses above 500 Gy induced the formation of one additional peak at 170 degrees C. The VIS region results were similar to those for the UV. ESR experiments have been developed to verify the influence of radiation and heat treatments on the centres and preliminary results showed great variation in the intensities of [TiO(4)](-), Al-O(-)-Al and Fe(3+) centres. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Electron spin resonance of Eu(2+) (4f(7), S=7/2) in a La hexaboride (LaB(6)) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu(2+) ions are covalent exchange coupled to the B 2p-like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu(2+) ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b(4)=-11.5(2.0) Oe, in agreement with the negative fourth order CFP, A(4), found for the non-S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.
Resumo:
The electron spin resonance (ESR) spectra of Eu2+ (4f(7), S = 7/2) in LaB6 single crystal show a single Dysonian resonance for the localized Eu2+ magnetic moments. It is shown that the Eu2+ ions are covalent exchange coupled to the (B) 2p-like host conduction electrons. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The ESR spectrum of CuCl2 adsorbed onto a silica gel surface chemically modified with the benzimidazole molecule showed that the surface complex has an octahedral symmetry with tetragonal distortion. The measured ESR parameters were g(parallel to) = 2.287, g(perpendicular to) = 2.062, A(parallel to) = 153 G and superhyperfine splitting A(N) = 15 G. The fit of the theoretical expressions to the experimental data was very reasonable. The effective spin orbit coupling constant for Cu2+ was reduced from its normal free ion value of lambda = -828 cm(-1) by as much as 30%. This reduction of lambda is normal in the solid state and in frozen solution complexes.
Resumo:
Two compounds [2tbpo·H+)2[CuCl4]= (yellow) and (2tbpo·H+)2[CuBr4]= (dark purple) (tbpo = tribenzylphosphine oxide) have been prepared and investigated by means of crystal structure, electronic, vibrational and ESR spectra. The crystal structure of the (2tbpo·H+)2[CuCl4]= complex was determined by three-dimensional X-ray diffraction. The compound crystallizes in the space group P42/n with unit-cell dimensions a = 19.585(2), c = 9.883(1)Å, V = 3790 (1)Å3, Z = 2, Dm = 1.303 (flotation) Dx = 1.302 Mg m-3. The structure was solved by direct methods and refined by blocked full-matrix least-squares to R = 0.053 for 2583 observed reflections. Cu(II) is coordinated to four chlorides in a tetrahedral arrangement. Tribenzylphosphine oxide molecules, related by a centre of inversion, are connected by a short hydrogen bridge. Chemical analysis, electronic and vibrational spectra showed that the bromide compound is similar to the chloride one and can be formulated as (2tbpo·H+)2[CuBr4]=. The position of the dd transition bands, the charge transfer bands, the ESR and the vibrational spectra of both complexes are discussed. The results are compared with analogous complexes cited in the literature. © 1983.
Resumo:
Electron spin resonance (ESR) experiments give extremely important information concerning spin arrangements in conducting polymers. This is evidenced by the behavior of the ESR lines as a function of temperature and microwave power. Our ESR data of pressed pellets of ClO- 4 doped poly(3-methylthiophene) (P3MT) synthesized at 25 °C show the predominance of polarons. Instead, the sample prepared at 5 °C shows the predominance of bipolarons. Besides, for both types of samples, crystallization, observed from the ESR data, has shown a rearrangement of spin species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Organic-inorganic hybrid materials based on the assembly between inorganic 2D host structure and polymer have received considerable attention in the last few years. This emerging class of materials presents several applications according to their structural and functional properties. Particularly, among others, layered double hydroxides (LDHs) provide the opportunity of preparing new organically modified 2D nanocomposites. Pyrrole carboxylic acid derivatives, namely 4-(lH-pyrrol-1-yl)benzoate, 3-(pyrrol-i-yl)-propanoate,7-(pyrrol-1-yl)-heptanoate, and aniline carboxylic acid derivative, namely 3-aminobenzoic acid, have been intercalated in LDHs of intralamellar composition Zn2Al(OH)(6). The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by powder X-ray diffraction patterns (PXRD), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and electron spin resonance (ESR). The basal spacing found by the PXRD technique gives evidence of the formation of bilayers of the intercalated anions. ESR spectra present a typical signal with a superhyperfine structure with 6 + 1 lines (g = 2.005 +/- 0.0004), which is assigned to the interaction between a carboxylate radical from the guest molecules and a nearby aluminium nucleus (I = 5/2) from the host structure. Additionally, the ESR data suggest that the monomers are connected to each other in limited number after thermal treatment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The isotherms of adsorption of MeX2 (Me = Cu2+, Co2+; X = Cl-, Br-, ClO4-) by silica gel chemically modified with 2-mercaptoimidazole (SiMI) were studied in acetone and ethanol solutions, at 25 degrees C. Covalently attached 2-mercaptoimidazole molecule to silica gel surface adsorbs MeX2 from solvent by forming a surface complex. The metal is bonded to the surface through the nitrogen atom of attached 2-mercaptoimidazole. At low loading, the electronic and ESR spectral parameters indicated that the Cu2+ complexes are in a distorted-tetragonal symmetry field. The d-d electronic transition spectra showed that for Cu(ClO4)(2) complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loading. The CoX2(X = Cl-, Br-, ClO4-) analogues possess a distorted-tetrahedral field.