9 resultados para Error detection

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article has the purpose to review the main codes used to detect and correct errors in data communication specifically in the computer's network. The Hamming's code and the Ciclic Redundancy Code (CRC) are presented as the focus of this article as well as CRC hardware implementation. Each code is reviewed in details in order to fill the gaps in the literature and to make it accessible to the computer science and engineering students as well as to anyone who may be interested in learning the technique to treat error in data communication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the results of a search for the flavor-changing neutral current decay Bs 0 → μ+ μ-. using a data set with integrated luminosity of 240 pb-1 of pp̄ collisions at √s = 1.96 TeV collected with the D0 detector in run II of the Fermilab Tevatron collider. We find the upper limit on the branching fraction to be B(Bs 0 → μ+ π-) ≤ 5.0 × 10-7 at the 95% C.L. assuming no contributions from the decay Bd 0 → μ+ μ- in the signal region. This limit is the most stringent upper bound on the branching fraction Bs 0 → μ+ μ- to date. © 2005 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The serological detection of antibodies against human papillomavirus (HPV) antigens is a useful tool to determine exposure to genital HPV infection and in predicting the risk of infection persistence and associated lesions. Enzyme-linked immunosorbent assays (ELISAs) are commonly used for seroepidemiological studies of HPV infection but are not standardized. Intra-and interassay performance variation is difficult to control, especially in cohort studies that require the testing of specimens over extended periods. We propose the use of normalized absorbance ratios (NARs) as a standardization procedure to control for such variations and minimize measurement error. We compared NAR and ELISA optical density (OD) values for the strength of the correlation between serological results for paired visits 4 months apart and HPV-16 DNA positivity in cervical specimens from a cohort investigation of 2,048 women tested with an ELISA using HPV-16 virus-like particles. NARs were calculated by dividing the mean blank-subtracted (net) ODs by the equivalent values of a control serum pool included in the same plate in triplicate, using different dilutions. Stronger correlations were observed with NAR values than with net ODs at every dilution, with an overall reduction in nonexplained regression variability of 39%. Using logistic regression, the ranges of odds ratios of HPV-16 DNA positivity contrasting upper and lower quintiles at different dilutions and their averages were 4.73 to 5.47 for NARs and 2.78 to 3.28 for net ODs, with corresponding significant improvements in seroreactivity-risk trends across quintiles when NARs were used. The NAR standardization is a simple procedure to reduce measurement error in seroepidemiological studies of HPV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)