7 resultados para Error Function
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The error function is present in several equations describing eletrode processes. But, only approximations of this function are used. In this work, these and other approximations are studied and evaluated according to precision.
Resumo:
This was a prospective study of 43 septic neonates at the NICU of the School of Medicine of Botucatu, São Paulo State University. Clinical and laboratory data of sepsis were analyzed based on outcome divided into two groups, survival and death. We calculated the discriminatory power of the relevant variables for the diagnosis of sepsis in each group, and using software for Discriminant Analysis, a function was proposed. There were 43 septic cases with 31 survivals and 12 deaths. The variables that had the highest discriminatory power were: n(o) of compromised systems, the SNAP, FiO2, and (A-a)O2. The study of these and others variables, such as birth weight, n(o) of risk factors, and pH using a Linear Discriminant Function(LDF) allowed us to identify the high-risk neonates for death with a low error rate (8.33%). The LDF was: F = 0.00043 (birth weight) + 0.30367 (n(o) of risk factors) - 0.1171 (n(o) of compromised systems) + 0.33223 (SNAP) + 2.27972 (pH) - 14.96511 (FiO2) + 0.01814 ((A-a)O2). If F > 22.77 there was high risk of death. This study suggests that the LDF at the onset of sepsis is useful for the early identification of the high-risk neonates that need special clinical and laboratory surveillance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.
Resumo:
A circuit for transducer linearizer tasks have been designed and built using discrete components and it implements by: a Radial Basis Function Network (RBFN) with three basis functions. The application in a linearized thermistor showed that the network has good approximation capabilities. The circuit advantages is the amplitude, width and center.