128 resultados para Epidermal Differentiation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A better understanding of the paracrine and autocrine regulatory loops within the cumulus-oocyte complex (COC) is fundamental for the improvement of in vitro maturation (IVM) outcomes in humans and domestic species. This review presents the most important local regulators identified in the COC to date with special attention to those secreted by the oocyte and acting on cumulus cells, as well as their roles in different processes crucial for the successful maturation of the COC. An autocrine regulatory loop mediated by epidermal growth factor-like (EGF-like) peptides in cumulus cells triggers COC maturation. During COC differentiation, oocyte secreted factors (OSFs), particularly members of the transforming growth factor-beta (TGF beta) and fibroblast growth factor (FGF) families, regulate meiotic resumption, cumulus expansion, cumulus metabolism, apoptosis and steroidogenesis.
Resumo:
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cercus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species-B. thuringiensis or B. cereus-were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A semi-nested reverse transcription-polymerase chain reaction (Semi-N-RT-PCR) was developed and used to detect the S glycoprotein gene of infectious bronchitis virus (IBV) strains and to discriminate H120 vaccine strain from other strains. Viral RNA was extracted from the allantoic fluid of chicken embryos and from tissues of chickens experimentally infected with different strains of IBV. Amplification and identification of the viral RNA was performed using two sets of primers complementary to a region of the S glycoprotein gene in the Semi-N-RT-PCR assay. The pair of primers used in the first PCR consisted of universal oligonucleotides flanking a more variable region of S1-S2 gene. The second primer pair was used in the Semi-N-RT-PCR and was comprised of one of the primers from the first universal pair together with either another universal internal oligolucleotide or a oligonucleotide sequence specific for the H120 strain of IBV. The universal primers detected all reference IBV strains and field isolates tested herein. The Semi-N-RT-PCR had high sensitivity and specificity, and was able to differentiate the H120 vaccine strain from other reference IBV strains; including M41 strain. All tissue samples collected from chickens experimentally infected with H120 or M41 strains were positive in the semi-nested RT-PCR using universal primers, while only the H120-infected tissue samples were amplified by the set of primers containing the H120-oligonucleotide. In conclusion, the ability of Semi-N-RT-PCR to detect distinct IBV strains and preliminarily discriminate the vaccine strain (H120) closes a diagnostic gap and offers the opportunity to use comprehensive PCR procedures for the IBV diagnosis.
Resumo:
A S. Pullorum (SP) é muito semelhante à S. Gallinarum (SG), agentes da Pulorose e Tifo aviário, respectivamente, sendo que as duas enfermidades são responsáveis por perdas econômicas no setor avícola. SP e SG são de difícil diferenciação em procedimento laboratorial rotineiro, mas uma prova bioquímica muito utilizada na distinção das duas refere-se à capacidade de assimilar o aminoácido ornitina: SP descarboxila este aminoácido enquanto SG não. No entanto, o isolamento de cepas com comportamento bioquímico atípico, tem dificultado tal diferenciação. Um dos genes relacionados à assimilação do aminoácido ornitina, denomina-se gene speC, o qual está presente nos dois sorovares. Analisando 21 amostras de SP e 15 de SG com a utilização da PCR não foi possível realizar a diferenciação dos dois sorovares pois os fragmentos gerados eram idênticos. Posteriormente, com o uso da técnica de tratamento enzimático com a enzima de restrição Eco RI, foi possível observar que o padrão de bandas gerado em cada sorovar era diferente, mesmo quando amostras que apresentavam comportamento bioquímico atípico eram analisadas. Tal fato permitiu a padronização da técnica para ser utilizada na diferenciação entre os sorovares Pullorum e Gallinarum de maneira rápida e segura.
Resumo:
Although Salmonella Pullorum and Salmonella Gallinarum cause different diseases in poultry, they are very similar. Both are non-motile and present the same somatic antigenic structure. They are differentiated by biochemical tests. Certain atypical strains are very difficult to distinguish. They do not produce the expected results when dulcitol and ornithine descarxboxylase tests are performed. Therefore, additional tests could be helpful. Many studies have chose the part I of the gene that encodes flagellin (fliC) to differentiate serotypes. Most Salmonella strains have two structural genes (fliC and fliB) that encode flagellins. Non-motile strains generally present these structural genes, but are not able to build a functional flagellum. It was demonstrated that enzymatic restriction of the amplified fliC gene using Hinp1I enzyme can differentiate SG from SP. In the present study, this method was adopted to analyze 14 SP and 22 SG strains, including some strains with atypical results in biochemical tests assessing the utilization of dulcitol and ornithine. The results showed that all SG strains were broken by the enzyme, whereas the 14 SP strains were not.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Trichophyton rubrum é um importante agente causal de dermatomicose. Os métodos de tipagem molecular têm sido recentemente desenvolvidos para responder questões sobre epidemiologia e auxiliar no esclarecimento de recidivas, após o tratamento. As seqüências aleatórias 1- (5'-d[GGTGCGGGAA]-3') e 6- (5'-d[CCCGTCAGCA]-3') foram usadas para tipagem molecular deste fungo por RAPD produzindo variabilidade intraespecífica. Cinco padrões foram observados entre os 10 isolados de T. rubrum, com ambas as seqüências. Foi concluído que a análise por RAPD pode ser utilizada para estudos epidemiológicos.