7 resultados para Enhanced images
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Surface-enhanced resonance Raman scattering (SERRS) is used for single-molecule detection from spatially resolved 1-mum(2) sections of a Langmuir-Blodgett (LB) monolayer deposited onto a Ag film. The target molecule, his (benzimidazo) thioperylene (BZP), is dispersed in an arachidic acid monomolecular layer containing one BZP molecule per mum(2) which is also the probing area of the Raman microscope. For concentrated samples (attomole quantities in the field of view), average SERRS, surface-enhanced fluorescence (SEF), and Raman imaging, including line mapping and global images at different temperatures, were recorded. Single-molecule SERRS spectra, obtained using an LB monolayer, present changes in bandwidth and relative intensities, highlighting the properties of single-molecule SERRS that are lost in average SERRS measurements of mixed LB monolayers obtained at the same temperatures. Also, the dilute system phenomenon of blinking is discussed with regard to results obtained from LB monolayers. The dilution process used in the single-molecule LB SERRS work is independently supported by fluorescence results obtained from very dilute solutions with monomer concentrations down to 10(-12) M.
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
This paper describes an image compounding technique based on the use of different apodization functions, the evaluation of the signals phases and information from the interaction of different propagation modes of Lamb waves with defects for enhanced damage detection, resolution and contrast. A 16 elements linear array is attached to a 1 mm thickness isotropic aluminum plate with artificial defects. The array can excite the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two synthetic aperture (SA) images with uniform and Blackman apodization and one image of Coherence Factor Map (CFM) are obtained. The specific interaction between each propagation mode and the defects and the characteristics of acoustic radiation patterns due to different apodization functions result in images with different resolution and contrast. From the phase information one of the SA images is selected at each pixel to compound the final image. The SA images are multiplied by the CFM image to improve contrast and for the dispersive A0 mode it is used a technique for dispersion compensation. There is a contrast improvement of 47.5 dB, reducing the dead zone and improving resolution and damage detection. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)