16 resultados para Energetic potential
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
It was evaluated the energetic efficiency and operational parameters of a windrowing and prismatic baling, both from CASE NEW HOLLAND® operations in sugarcane vegetal residues (green leaves, dry leaves and tops) picked mechanically in green cane. The area belongs to COSTA PINTO MILL (COSAN® Group) which was harvested mechanically by combines in the State of Sao Paulo, Brazil. The geographic location of the area is: Latitude 22°40'30S, Longitude 47°36'38W and Altitude of 605m. The variety was RB 82-5336, planted in 1.40m row spacing, with 78t.ha-1 yield. The vegetal residues analysis obtained 69.93% of leaves, 21.44% of stalks fractions, 2.27% of tops and 6.36% of total strange matter. The vegetal residues values were: gross heat of 18.43MJ.kg-1, low heat of 17.00MJ.kg'1 and useful heat of 12.94MJ.kg-1. The vegetal residues average energetic potential was 342.48GJ.ha-1. The treatments were simple, double and triple windrowing. The use of the rake and prismatic baler to pick up the residues was viable. The simple windrowing treatment presented the best results: effective capacity of 83.06t.ha-1, fuel consumption of 0.18L.t -1 and 99.95% of positive energetic efficiency. The bales obtained in the treatment of triple windrowing presented the largest specific mass average of 221.11kg.m-3. The soil amount in the bales increased with successive windrowing. The baling operation in the triple windrowing treatment obtained better results, presenting the effective capacities of 20.29t.h -1 and 1.45ha.h-1 and fuel consumption of for baled in 1.37L.t-1. The high total energetic efficiency of 99.53% indicates that is technically viable the withdrawal of the vegetal residues.
Resumo:
The objective of this study was to analyze the sugar cane vegetal residues collection, as well as determining its energetic potential, using a rake and cylindrical baler, both from NEW HOLLAND® under two different windrowing process (simple and double). The field tests were carried out in an area that belongs to COSTA PINTO MILL (COSAN® Group) in the city of Piracicaba, Sao Paulo State, Brazil. The geographic location of the area is: Latitude 22°4030'S, Longitude 47°3633'W and altitude of 605m. From the trash analysis, before the baling, the following average results were obtained: 69.93% of leaves; 2.27% of stalks fractions; 21.44% of tops and 6.36% of total strange matter. The estimated residues yield was 27.01 tons.ha -1 with a gross heat of 18.43 MJ.kg-1, low heat of 17.01 MJ.kg-1, useful heat of 13.32 MJ.kg-1, average moisture of 20.76% and an energetic potential of 494,875.09 MJ.ha-1. In the windrowing operations (simple and double) the averages of the 5 out of 13 analyzed variable presented differences between them in a 1% level of significance in the Tukey Test. The averages comparison of the results for bale's specific mass and the effective capacities (ton.h-1) e (ha.h-1) had been significant at a 5% level in the Tukey Test. The comparisons of the averages for the results had been significant to 1% level. The strange matter averages of the bales did not differed between them.
Resumo:
Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. © 2013 Taylor & Francis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The anaerobic treatment of sewage is widely employed in Brazil and it is an appreciated way for the treatment of effluents, helping to reduce the environmental impact in rivers. The methane gas obtained from the process can be applied to improve the energetic efficiency of the system, reducing the amount of waste and the cost of the treatment process. This work presents the net energy balance of anaerobic reactors applied to the treatment of sewage. The analysis was performed considering full-scale and laboratory-scale treatment systems. In laboratory scale, the results from three kinds of systems were compared regarding the biological treatment of greywater. Two of them (UASB7 and UASB12) were anaerobic and the other one was a combined anaerobic-aerobic system (UASB7/SBR6). Greywater methanization (compared to theoretical maximum) was calculated considering 100% removal (g BOD/day), the literature percentage removal and the anionic surfactant presence in the effluentt. For each of these three cases, the efficiencies were, respectively, 16.9%, 43.6% and 51.3% in UASB7 reactor, 25.6%, 50.3% and 59.2% in UASB12 reactor and 30.6%, 61.2% and 71.9% in UASB7/SBR6 reactor. The energetic potential was found to be 4.66x10-4, 7.77x10-4 and 5.12x10-4 kWh/L for the UASB7, UASB12 and UASB7/SBR6 reactors, respectively. The pumping system, the aeration (in the anaerobic-aerobic system) and the temperature controlled heating system were considered to calculate the energetic consumption. However, the third one was not employed since tropical regions like Brazil do not need heating systems and also because of its high energetic consumption. The calculated net energy balance in the reactors was negative in the case of greywater, respectively -0.16, -0.28 and -0.18 kWh/L for the reactors UASB7, UASB12 and UASB7/SRB6. In full scale (ETE Jardim das Flores - Rio Claro, SP), the average energy... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The biogas originated from anaerobic degradation of organic matter in landfills consists basically in CH4, CO2, and H2O. The landfills represent an important depository of organic matter with high energetic potential in Brazil, although with inexpressive use in the present. The estimation of production of the productive rate of biogas represents one of the major difficulties of technical order to the planning of capture system for rational consumption of this resource. The applied geophysics consists in a set of methods and techniques with wide use in environmental and hydrogeological studies. The DC resistivity method is largely applied in environmental diagnosis of the contamination in soil and groundwater, due to the contrast of electrical properties frequent between contaminated areas and the natural environment. This paper aims to evaluate eventual relationships between biogas flows quantified in drains located in the landfill, with characteristic patterns of electrical resistivity in depth. The drain of higher flow (117 m3 /h) in depth was characterized for values between 8000 Ω⋅m and 100.000 Ω⋅m, in contrast with values below 2000 Ω⋅m, which characterize in subsurface the drain with less flow (37 m3 /h), besides intermediary flow and electrical resistivity values, attributed to the predominance of areas with accumulation or generation of biogas.