6 resultados para Empty space
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Resumo:
Background: Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings: We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance: Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. © 2013 Bueno et al.
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
Pós-graduação em Educação - FFC
Civilização suficientemente boa? Do princípio do desamparo humano ao desamparo como princípio humano
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The study compared the host response to a human and a porcine acellular dermal tissue implanted in the subcutaneous space of a rat model. The human and porcine acellular grafts were surgically implanted in the subcutaneous tissue of rats (5 rats/group) and the materials were evaluated at 7, 15, 30, 60 and 180 postoperative days (PO). The histological immune response was quantified using a digital image analysis system, which evaluated the number of vessels present in the implants and in the surrounding soft tissue, the area of inflammatory cell infiltration in the grafts, the width of the capsular formation present around the tissues and the area of implants absorbed. The data were submitted to statistical analysis. Light microscopy showed mononuclear cellular infiltration, the presence of a capsular formation surrounding the grafts and the presence of vacuolar structures (optically empty spaces) inside the implants. The image analysis comparing both materials showed significant inflammatory cells in the human graft at 15 and 30 PO, thicker capsular formation in the porcine tissue at 60 PO, increased number of vessels inside the implants and in the surrounding tissues in the porcine graft and a similar absorption pattern in both materials at 180 PO. The histological findings showed that both tissues were well-tolerated when implanted in the subcutaneous tissue of rats, allowing us to consider the porcine acellular dermal graft as a provisional alternative material for reconstructive plastic surgery. Copyright © 2005 Taylor & Francis LLC.
Resumo:
We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.