42 resultados para Electron beam evaporations
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Nanohardness of a Ti thin film and its interface deposited by an electron beam on a 304 SS substrate
Resumo:
The results of nanohardness measurements at a film surface and film-substrate interface are presented and discussed. An electron beam device was used to deposit a Ti film on a 304 stainless steel (304 SS) substrate. The diluted interface was obtained by thermal activated atomic diffusion. The. Ti film and Ti film-304 SS interface were analyzed by energy dispersive spectrometry and were observed using atomic force microscopy. The nanohardness of the Ti film-304 SS system was measured by a nanoindentation technique. The results showed the Ti film-304 SS interface had a higher hardness value than the Ti film and 304 SS substrate. The Ti film surface had a lower hardness due to the presence of a TiO2 thin layer.
Resumo:
The surface modifications induced on Teflon FEP and Mylar C polymer films by a low energy electron beam are probed using Raman and FTIR spectroscopy. The electron beam, which does not affect the Mylar C, surface, may break the copolymer chain into its monomers degrading the Teflon FEP surface. For Mylar C the electron beam decreases the roughness of the polymer surface. This difference in behavior may explain recent results in which the surface modifications investigated by measuring the second crossover energy shift in the electronic emission curve differed for the two polymers (Chinaglia et al [1]). In addition, the Raman data showed no evidence of carbon formation for either polymer samples, which is explained by the fact that only a low energy electron beam is used.
Resumo:
Fast transient current decay was recorded on POMA samples during current pulses (in the order of milliseconds) provided by a low energy electron beam under an applied field. The characteristic time decay depends on the electron beam energy and on the bias polarity. The results were explained taking into account the effect of space charge, the intrinsic conductivity of the non-irradiated region of the sample and the radiation-induced conductivity of the thin irradiated region. Fitting parameters may provide the value of both intrinsic and radiation-induced conductivities and the average electron range.
Resumo:
Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd: Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3-5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd: Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 900 C, and the best performance of 44 mW cm-2 in 2.0molL-1 ethanol was obtained at 850C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2 WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano-to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Precipitation of FeTiP is reported to occur in Ti-added IF steels containing high P during thermomechanical processing. An ultra-low carbon (ULC) Nb-added steel ingot containing a higher P content (< 0.8 wt-%) was produced via aluminothermic reduction of Fe2O3 followed by double electron beam melting (EBM). FeNbP coarse precipitates were observed in the as-cast microstructure. After soaking at 1050
Resumo:
Thin films were prepared using glass precursors obtained in the ternary system NaPO(3)-BaF(2)-WO(3) and the binary system NaPO(3)-WO(3) with high concentrations of WO(3) (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L(I) and L(III) absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO(6)) and that these films are free of tungstate tetrahedral units (WO(4)). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO(3) increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO(6) octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO(3) concentrated samples (above 40% molar) attributed to the formation of WO(6) clusters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Glassy films of 0.2[Sb(PO3)(3)]-0,8Sb(2)O(3) with 0.8 mum-thickness were deposited on quartz substrates by electron beam evaporation. A contraction in the film thickness (photoinduced decrease in volume) and photobleaching effect associated with a decrease of up to 25% in the index of refraction has been observed in the films after irradiation near the bandgap (3.89 eV), using the 350.7 nm (3.54 eV) Kr+ ion laser line with 2.5 W/cm(2) for 30 min. A loss of 30% in the phosphorus concentration was measured by wavelength dispersive X-ray microanalysis in the film after laser irradiation with 5.0 W/cm(2) for 1.0 h. These photoinduced changes in the samples are dependent on the power density and intensity profile of the laser beam. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings with period from 500 nm up to 20 mum and depth profile of similar to50 nm in the films after laser irradiation with 5.0 W/cm(2) for 1 h. Real-time diffraction efficiency measurements have shown that ultraviolet irradiation induces first a refractive index grating formation, and after this, the photocon traction effect takes place generating an irreversible relief grating. Diffraction efficiency up to 10% was achieved for the recorded gratings. 3D-refraction index measurements and atomic force microscopy images are presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We will present measurements and calculations related to the antisymmetric perturbations, and comparisons with the symmetric ones, of the IFUSP race-track microtron booster accelerator end magnets. These perturbations were measured in planes situated at +/-12 mm of the middle plane, in a gap height of 4 cm, for a field distribution of about 0.1 T. The measurements were done in 1170 points, separated by a distance of 8 mm, using an automated system with a +/-1.5 mu T differential Hall probe. The race-track microtron booster is the second stage of the 30.0 MeV electron accelerator under construction at the Linear Accelerator Laboratory in which the required uniformity for the magnetic field is of about 10(-3). The method of correction employed to homogenize the IFUSP race-track microtron booster accelerator magnets assures uniformity of 10(-5) in an average field of 0.1 T, over an area of 700 cm(2). This method uses the principle of attaching to the pole pieces correction coils produced by etching techniques, with copper leads shaped like the isofield lines of the normal component of the magnetic field measured. The ideal planes, in which these measurements are done, are calculated and depend on the behavior of the magnetic field perturbations: symmetric or antisymmetric with reference to the middle plane of the magnet gap. These calculations are presented in this work and show that for antisymmetric perturbations there is no ideal plane for the correction of the magnetic field; for the symmetric one, these planes are at +/-60% of the half gap height, from the middle plane. So this method of correction is not feasible for antisymmetric perturbations, as will be shown. Besides, the correction of the symmetric portion of the field distribution does not influence the antisymmetric one, which almost does not change, and corroborates the theoretical predictions. We found antisymmetric perturbations of small intensity only in one of the two end magnets. However, they are not detected at +/- 1 mm of the middle plane and will not damage the electron beam.
Resumo:
A photocontraction effect in amorphous films of the binary glass system 0.20 [Sb(PO3)(3)](n)-0.80 Sb2O3 has been observed after UV irradiation using the 350.7 nm Kr+ ion laser line with 5.0 W/cm(2). Good optical quality films up to 4.0 mum were deposited on silica substrates at room temperature in vacuum by electron beam physical vapor deposition (EB-PVD) and characterized using WDX, XRD, optical absorption, infrared reflectance, profilometry and atomic force microscopy (AFM) techniques. Very stable glasses were prepared by the melt quenching technique and used as evaporation source for the production of films. The photoinduced structural change (PSC) was observed as a variation of about 6% in the film thickness and this effect is accompanied by a photobleaching of the irradiated area with a blue shift of the optical absorption edge. Otherwise this photoinduced change in the film thickness is very sensitive to the variations in the shape and intensity of the laser beam; therefore several possibilities in optical recording arise from these results. (C) 2003 Published by Elsevier B.V.