148 resultados para Electric field enhancement
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. © 2013 IOP Publishing Ltd.
Resumo:
The polarization effects of in-plane electric fields and eccentricity on electronic and optical properties of semiconductor quantum rings (QRs) are discussed within the effective-mass approximation. As eccentric rings may appropriately describe real (grown or fabricated) QRs, their energy spectrum is studied. The interplay between applied electric fields and eccentricity is analysed, and their polarization effects are found to compensate for appropriate values of eccentricity and field intensity. The importance of applied fields in tailoring the properties of different nanoscale materials and structures is stressed.
Resumo:
The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods: an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels. Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical works on anisotropic rings.
Resumo:
Electron quasi-stationary states in a periodic semiconductor superlattice are calculated, as linear combinations of Wannier-Kohn functions, for different values of an electric field applied along the heterostructure. A comparison with an alternative approach, which is based on the localization of quasi-stationary states, is performed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This work reports dielectric measurements performed on Pb(Zr0.53Ti0.47)O3 (PZT) thin films prepared by a polymeric precursor method. The -E curves obtained for the PZT film measured at 100 kHz, under a small ac 0.2 kV/cm signal-test and a dc scan featured a typical butterfly curve. However, the -E curves obtained for PZT film under a dc scan, with a scan rate of 0.003 V/s, shows a pronounced asymmetry. The absence of a symmetric secondary peak in -E curves could be an indication of essentially 180 domain switching.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]
Resumo:
We used a Stark-Optoacoustic cell and hybrid waveguide resonators to perform an Infrared and Far Infrared Stark Spectroscopy study on some transitions of (CD3OH)-C-13. Different behaviours of the transitions in the presence of a d.c. electric field were observed. The Stark splittings of six FIR laser lines ranging from 34 to 136 MHz/kVcm(-1) were determined. The analysis of the behaviour of the IR and FIR transitions in the presence of the external electric fields gives important and exclusive information on the levels involved in the transitions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.
Resumo:
The main objective this article is describe a methodology for the calculation of the profile of the electric field in the level soil and proximities originated by electric energy transmission systems real and in operation in the country. It also is commented the equation used and your computational implementation in order to agile and to optimize the studies. The results of simulations were just presented for the transmission system in the voltage class 500 kV for simplify the understanding and space restriction in the article, very although five others types of configurations have also been used in the complete study with very voltages and respective classes. The results were animating and very nearby of values well-known of electric field of other and publications traditional in the area. The graphic exits of program for better visual comprehension and understanding went in accomplished in the plan and in the space © 2010 IEEE.
Resumo:
In this study, we report the efficiency of photocatalytic and photoelectrochemical treatment using titanium dioxide as semiconductor and its applications in water disinfection. It was compared the efficiency of the two methods on the killing of E.coli cells. The photoelectrochemical treatment with electric field enhancement showed a good result and could be a new technology to water treatment.
Resumo:
The resistivity of a field reversed configuration in a theta-pinch with slow rising current was investigated during the turbulent phase from the moment of field reversal until end of plasma radial implosion. This transport coefficient was obtained in a hydrogen plasma by local measurements with magnetic probe and compared to numerical calculations with Chodura resistivity and evolution of lower hybrid drift instability. The values of resistivity are higher than those predicted by classical binary collision. During early phase of confinement, the doubly layer structure of current sheath in the low electric field machine was theoretically well reproduced with anomalous collision frequency calculated with Chodura resistivity that provides appropriate conditions for onset of lower hybrid drift instability and the regular evolution of pinch. The plasma dynamic, radial profiles of magnetic field during the radial compression and resistivity values were equally close to those observed by the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698405]
Resumo:
This article assesses the use of the constant current (CC) method for characterizing dielectric films. The method is based on charging the sample with a constant current (current stress) and measuring the corresponding voltage rise under the closed circuit condition. Our article shows that the CC method is an alternative to the constant voltage stressing method to study the electric properties of nonpolar, ferroelectric, and polar polymers. The method was tested by determining the dielectric constant of polytetrafluoroethylene, and investigating the electric conduction in poly(ethylene terephthalate). For the ferroelectric polymer poly(vinylidene fluoride), it is shown that hysteresis loops and the dependence of the ferroelectric polarization on the electric field can be obtained. (C) 2001 American Institute of Physics.
Resumo:
The solar events that occurred at the end of October 2003 gave rise to very strong geomagnetic disturbances that peaked twice with Dst values reaching -345 nT around 0000 UT on 30 October and -400 nT around 2300 UT, on the same day. Disturbances in several ionospheric parameters were observed over Brazil. This work will focus on the ionospheric response to the initial westward prompt penetration electric field and on the strong intensification of the equatorial ionization anomaly that occurred because of the electric field polarity reversal that followed in the early morning hours of 29 October. The F layer peak height over the equator first decreased under the strong prompt penetration westward electric field, which was followed by significant height increase under eastward electric field. We have used Sheffield University Plasmasphere Ionosphere Model (SUPIM) with an intensified westward disturbed electric field in the presunrise hours, presumably due to prompt penetration from the magnetosphere, in order to study the effect of such a field in the ionosphere. The simulation results showed that prompt penetration of magnetospheric electric fields of westward polarity to the nightside equatorial region seems to be the most probable cause of the initial F layer height decreases. The intensification of the equatorial ionization anomaly and the unusual enhancement on F layer peak density, which was not modeled by the SUPIM, are explained as caused by the strong eastward electric field that followed the initial phase in combination with a highly variable disturbed meridional/transequatorial wind system as inferred from the F2 layer peak height variations. The highly dynamic wind pattern, with a short-term response (2-4 hours), is compatible with the predictions of some previous theoretical model calculations reported in the literature.