155 resultados para Electric Generators
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.
Resumo:
This paper introduces a method for the supervision and control of devices in electric substations using fuzzy logic and artificial neural networks. An automatic knowledge acquisition process is included which allows the on-line processing of operator actions and the extraction of control rules to replace gradually the human operator. Some experimental results obtained by the application of the implemented software in a simulated environment with random signal generators are presented.
Resumo:
An analysis of the performances of three important methods for generators and loads loss allocation is presented. The discussed methods are: based on pro-rata technique; based on the incremental technique; and based on matrices of circuit. The algorithms are tested considering different generation conditions, using a known electric power system: IEEE 14 bus. Presented and discussed results verify: the location and the magnitude of generators and loads; the possibility to have agents well or poorly located in each network configuration; the discriminatory behavior considering variations in the power flow in the transmission lines. © 2004 IEEE.
A new method for real time computation of power quality indices based on instantaneous space phasors
Resumo:
One of the important issues about using renewable energy is the integration of dispersed generation in the distribution networks. Previous experience has shown that the integration of dispersed generation can improve voltage profile in the network, decrease loss etc. but can create safety and technical problems as well, This work report the application of the instantaneous space phasors and the instantaneous complex power in observing performances of the distribution networks with dispersed generators in steady state. New IEEE apparent power definition, the so called Buccholz-Goodhue apparent power, as well as new proposed power quality (oscillation) index in the three-phase distribution systems with unbalanced loads and dispersed generators, are applied. Results obtained from several case studies using IEEE 34 nodes test network are presented and discussed.
Resumo:
Low flexibility and reliability in the operation of radial distribution networks make those systems be constructed with extra equipment as sectionalising switches in order to reconfigure the network, so the operation quality of the network can be improved. Thus, sectionalising switches are used for fault isolation and for configuration management (reconfiguration). Moreover, distribution systems are being impacted by the increasing insertion of distributed generators. Hence, distributed generation became one of the relevant parameters in the evaluation of systems reconfiguration. Distributed generation may affect distribution networks operation in various ways, causing noticeable impacts depending on its location. Thus, the loss allocation problem becomes more important considering the possibility of open access to the distribution networks. In this work, a graphic simulator for distribution networks with reconfiguration and loss allocation functions, is presented. Reconfiguration problem is solved through a heuristic methodology, using a robust power flow algorithm based on the current summation backward-forward technique, considering distributed generation. Four different loss allocation methods (Zbus, Direct Loss Coefficient, Substitution and Marginal Loss Coefficient) are implemented and compared. Results for a 32-bus medium voltage distribution network, are presented and discussed.
Resumo:
The paper addresses the issue of apportioning of the cost of transmission losses to generators and demands in a multimarket framework. Line flows are unbundled using equivalent bilateral exchanges on a DC-network model and allocated to generators and demands. Losses are then calculated based on unbundled flows and straightforwardly apportioned to generators and demands. The proposed technique is particularly useful in a multimarket framework, where all markets have a common grid operator with complete knowledge of all network data, as is the case of the Brazilian electric-energy system. The methodology proposed is illustrated using the IEEE Reliability Test System and compared numerically with an alternative technique. Appropriate conclusions are drawn. © The Institution of Engineering and Technology 2006.
Resumo:
Open access philosophy applied by regulatory agencies may lead to a scenario where captive consumers will solely face the responsibility on distribution network's losses even with Independent Energy Producers (also known as Distributed Generation) and Independent Energy Consumers connected to the system. This work proposes the utilization of a loss allocation method in distribution systems where open access is allowed, in which cross-subsidies, that appear due to the influence the generators have over the system losses, are minimized. Thus, guaranteeing to some extent the efficiency and transparency of the economic signals of the market. Results obtained through the Zbus loss allocation method adapted for distribution networks are processed in such a way that the corresponding allocation to the generation buses is divided among the consumer buses, while still considering consumers spatial characteristics. © 2007 IEEE.
Resumo:
The main objective of this work is to analyze the ability of FACTS devices like TCSC and UPFC to damp low frequency oscillations and a POD controller is also included. A comparative study of damping effect of those devices IS carried out. The Power Sensitivity Model (PSM) is used to the representation of the electric power system. Sensibility analysis using the residue method shows the best place for the installation of FACTS and the procedure to determine POD parameters. ©2008 IEEE.
Resumo:
In the industrial environment the challenge is use better the productive resources: people and machine. The following work has the main goal improve the efficient losses analysis in the stator bar’s production bottleneck equipment situated in the Electric generator’s factory. The action research involved Theory of Constraints on the restriction system identification and developed the data collection framework by losses typology for indicator measurement. The research showed the data collection standardization importance to obtain reliable data and strategic efficiency indicator to optimize equipments. Besides of this, OEE and TEEP indicator demonstrated efficiency results to analyze the actual efficiency when the machine works and the increase capacity opportunity to treat the hide costs in the organization following the continuous improvement
Resumo:
Since the 80s huge efforts have been made to utilize renewable energy sources to generate electric power. An important issue about using renewable energy sources is a Distribution Management System (DMS) in presence of dispersed generators. This paper reports some aspects of integration of the dispersed generators in the DMS. Besides, an investigation of impact of the dispersed generators on the overall performances of the distribution systems in steady state is performed. In order to observe losses in the distribution networks with dispersed generators, several loss allocation methods are applied. Results obtained from case study using IEEE test network, are presented and discussed. © 2003 IEEE.
Resumo:
Since the 1980s, huge efforts have been made to utilise renewable energy sources to generate electric power. One of the interesting issues about embedded generators is the question of optimal placement and sizing of the embedded generators. This paper reports an investigation of impact of the integration of embedded generators on the overall performances of the distribution networks in the steady state, using theorem of superposition. Set of distribution system indices is proposed to observe performances of the distribution networks with embedded generators. Results obtained from the case study using IEEE test network are presented and discussed.
Resumo:
In the last 20 years immense efforts have been made to utilize renewable energy sources for electric power generation. This paper investigates some aspects of integration of the distributed generators into the low voltage distribution network. An assessment of impact of the distributed generators on the voltage and current harmonic distortion in the low voltage network is performed. Results obtained from a case study, using real-life low voltage network, are presented and discussed.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
O objetivo deste trabalho foi avaliar as taxas de ativação e de clivagem de oócitos bovinos tratados com estrôncio (10mm de SrCl2), após maturação in vitro por 27-28 horas. No experimento 1, os tratamentos foram: S4 - ativação pelo estrôncio por 4 horas; S12 - ativação pelo estrôncio por 12 horas; S30 - ativação pelo estrôncio por 30 horas; e P - ativação por pulso elétrico (3 pulsos de 1,0kv/cm). No experimento 2 os tratamentos foram: PS4 - ativação combinada pelo pulso elétrico e pelo estrôncio por 4 horas; S4P - ativação pelo estrôncio por 4 horas e pelo pulso elétrico; e PS30 - ativação pelo pulso elétrico e pelo estrôncio por 30 horas. No experimento 1, todos os tratamentos apresentaram taxas similares de ativação (83-90%; P>0,05). Para clivagem, P foi melhor (53%; P<0,05) do que todos os tratamentos com estrôncio (6 a 28%). No experimento 2, o tratamento S4P apresentou melhor taxa de ativação (88%; P<0,05) do que PS4 e PS30 (60 e 68%, respectivamente). Para clivagem, observou-se o mesmo padrão, S4P (65%; P<0,05) e PS4 e PS30 (37% e 44%, respectivamente). Conclui-se que o estrôncio é capaz de ativar oócitos bovinos e sua combinação com pulso elétrico não melhora a ativação. Este é o primeiro relato demonstrando que o estrôncio ativa oócitos bovinos.
Resumo:
Neste trabalho, ajustou-se um modelo matemático para quantificar o efeito do rendimento do motor elétrico sobre os custos de um sistema de bombeamento para irrigação na estrutura tarifária de energia elétrica convencional e horo-sazonal verde, bem como calcular o tempo de recuperação do capital investido no equipamento de maior rendimento. em seguida, o mesmo foi aplicado a um sistema de irrigação tipo pivô central em duas opções de rendimento do motor elétrico: 92,6% (linha padrão) e 94,3% (linha alto rendimento), sendo que o custo de aquisição do primeiro correspondeu a 70% do segundo. A potência do motor elétrico era de 100 cv. Os resultados mostraram que o modelo permitiu avaliar se um motor de alto rendimento era viável economicamente em relação ao motor-padrão em cada estrutura tarifária. Nas duas estruturas tarifárias, o motor de alto rendimento não foi viável. Na tarifa horo-sazonal verde, somente seria viável se seu rendimento fosse 4,46% superior ao do motor-padrão. Na tarifa convencional, somente seria viável se o ganho de rendimento superasse 2,71%.