238 resultados para Elastic static modulus

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1024x768 This research aimed to investigate possible differences in values of longitudinal modulus of elasticity for wood species usually employed for structural purposes, as Castanheira (Bertholletia excelsa), Cambará (Erisma uncinatum), Cumaru (Dipteryx odorata), Jatobá (Hymenaea stilbocarpa), Garapa (Apuleia leiocarpa) and Peroba Rosa (Aspidosperma polyneuron), obtained from compression and tension parallel to grain, and static bending tests. Recommendations of the Brazilian standard ABNT NBR 7190:1997, Annex B, were followed. Statistical analysis results for the cited properties, had equivalent averages for the six wood species analyzed. This confirms that any of the three tests can be used to obtain the longitudinal elastic modulus and which could avoid the necessity of evaluating stiffness values for wood by more than one kind of mechanical test. Normal 0 21 false false false PT-BR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabela normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A madeira roliça possui grande emprego nas construções civis, desempenhando a função de vigas, colunas, fundações, postes para distribuição de energia elétrica, entre outras, apresentando a vantagem de não ser processada, como é o caso da madeira serrada. O projeto envolvendo elementos roliços requer, além de outras variáveis estruturais, o conhecimento do módulo de elasticidade. No Brasil, os documentos normativos que tratam da determinação das propriedades de rigidez e resistência para peças roliças de madeira estão em vigência há mais de vinte anos sem revisão técnica. A madeira roliça, por geralmente possuir eixo com curvatura não nula, pode apresentar, segundo a posição da peça no ensaio de flexão, valores diferentes do módulo de elasticidade. Este trabalho tem como objetivo analisara influência da posição de peças roliças de madeira de Eucalyptus grandis na determinação do módulo de elasticidade na flexão. O ensaio de flexão utilizado é o de três pontos, sendo cada peça avaliada em duas posições distintas, definidas mediante o giro da seção transversal em torno do eixo. Os resultados encontrados indicam a necessidade do ensaio de flexão em, pelo menos, duas posições distintas da peça.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal), R(radial) and T(tangential) are coincident with the Cartesian axes (x, y, z), is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young's modulus and shear modulus, with fiber orientation are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the physical and mechanical properties of particleboard made with pruning wastes from Ipê (Tabebuia serratifolia) and Chapéu-de-Sol (Terminalia catappa) trees. Particleboards were prepared with both wood species, using all the material produced by grinding the pruning wastes. The particleboards had dimensions of 45×45 cm, a thickness of approximately 11.5 mm and an average density of 664 kg/m3. A urea-formaldehyde adhesive was used in the proportion of 12% of the dry particle mass. The particleboards were pressed at a temperature of 130 C for 10 mins. The physical and mechanical properties analyzed were density, moisture content, thickness swelling, percentage of lignin and cellulose, modulus of resilience, modulus of elasticity and tensile strength parallel to the grain, accordingly to the standards NBR 14810 and CS 236-66 (1968). The particleboards were considered to be of medium density. The particle size significantly affected the static bending strength and tensile strength parallel to the grain. Ipê presented better results, demonstrating a potential for the production and use of particleboard made from this species. © The Author(s) 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study consistently the pion's static observables and the elastic and γ* γ → π0 transition form factors within a light-front model. Consistency requires that all calculations are performed within a given model with the same and single adjusted length or mass-scale parameter of the associated pion bound-state wave function. Our results agree well with all extent data including recent Belle data on the γ* γ → π0 form factor at large q2, yet the BaBar data on this transition form factor resists a sensible comparison. We relax the initial constraint on the bound-state wave function and show the BaBar data can partially be accommodated. This, however, comes at the cost of a hard elastic form factor not in agreement with experiment. Moreover, the pion charge radius is about 40 % smaller than its experimentally determined value. It is argued that a decreasing charge radius produces an ever harder form factor with a bound-state amplitude difficultly reconcilable with soft QCD. We also discuss why vector dominance type models for the photon-quark vertex, based on analyticity and crossing symmetry, are unlikely to reproduce the litigious transition form factor data. © 2013 Springer-Verlag Wien.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo do presente trabalho foi o estudo da variabilidade das propriedades de resistência e rigidez à flexão estática e à densidade aparente (12%) entre a madeira juvenil e adulta de Pinus taeda L., de 37 anos de idade, procedente do Horto Florestal de Manduri, Estado de São Paulo. Na primeira parte do trabalho foram determinadas a região de madeira juvenil, a região de transição e a região de madeira adulta, por meio de estudos anatômicos (comprimento dos traqueídes axiais), segundo as recomendações das normas ABNT e IAWA. Os resultados mostraram que a região de madeira juvenil dessa espécie ocorre aproximadamente até o 18º anel de crescimento. Na segunda parte do trabalho foram analisados a resistência (módulo de ruptura - MOR) à flexão, o módulo de elasticidade (MOE) nessa mesma solicitação e a densidade aparente (12%) para as madeiras juvenil e adulta. Os resultados mostraram que o MOE e o MOR da madeira juvenil foram menores e mais variáveis que aqueles obtidos para madeira adulta. A densidade apresentou a mesma tendência observada nas propriedades avaliadas no ensaio de flexão estática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of variable stoichiometry and the high mobility of oxygen in the CuOx planes of SmBa2Cu3O7 give rise to a rich phase diagram. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in SmBa2Cu3O7, above room temperature, using a torsion pendulum operating in frequencies around 40 Hz. The mobility of oxygen atoms in the CuOx planes in the various phases has been discussed and the thermally activated peak of elastic energy dissipation observed around 500 K was interpreted in that framework. (C) 2004 Elsevier B.V. All rights reserved.